【递归】【前序中序后序遍历】【递归调用栈空间与二叉树深度有关】【斐波那契数】Leetcode 94 144 145

本文介绍了递归实现的前序、中序和后序遍历算法,分析了它们的时间复杂度均为O(N),空间复杂度也为O(N),重点强调了递归调用栈与二叉树深度的关系以及避免栈溢出的方法。此外,还讨论了斐波那契数列的递归计算问题,提出了使用哈希映射进行缓存优化的解决方案。
摘要由CSDN通过智能技术生成

【递归】【前序中序后序遍历】【递归调用栈空间与二叉树深度有关】Leetcode 94 144 145

---------------🎈🎈题目链接 前序遍历🎈🎈-------------------
---------------🎈🎈题目链接 中序遍历🎈🎈-------------------
---------------🎈🎈题目链接 后序遍历🎈🎈-------------------

1.前序遍历(递归) preorder

时间复杂度分析:
对于每个节点,只访问它一次。因此,时间复杂度是 O(n),其中 n 是二叉树中节点的数量。
空间复杂度分析:
在递归调用过程中,使用了一个辅助列表来存储节点的值。
最坏情况下,二叉树是一个单链的情况,即树的深度等于节点数量n,递归调用栈的深度即为n,此时空间复杂度是 O(n)。
综上所述,时间复杂度是 O(n),空间复杂度是 O(n)。

⭐️递归调用栈的大小和二叉树的深度有关!
在Java中,递归调用栈(Recursion Call Stack)是指在执行递归函数时,系统自动为每次函数调用分配的内存空间。每当函数被调用时,相关的局部变量、参数和返回地址等信息都会被存储在栈内存中,直到函数执行完毕并返回结果,然后系统会释放这些内存空间。

当一个函数在执行过程中调用了自身(或者间接调用了其他函数,形成了递归循环)时,会导致递归调用栈的深度增加。每次递归调用都会向栈内存中压入一帧(Frame),表示一个函数调用的信息,包括函数的参数、局部变量和返回地址等。当递归调用结束时,对应的帧会从栈顶弹出,释放相应的内存空间。

递归调用栈在处理递归算法时非常重要,它可以帮助跟踪每次递归调用的状态,确保递归函数能够正确地返回结果。然而,需要注意的是,递归调用栈的深度是有限的,如果递归的层数过深,可能会导致栈溢出(Stack Overflow)错误。因此,在编写递归函数时,需要谨慎考虑递归的深度和递归终止条件,以避免栈溢出错误。

时间复杂度O(N)
空间复杂度O(N)

在这里插入图片描述

2.中序遍历(递归)inorder

时间复杂度O(N)
空间复杂度O(N)

在这里插入图片描述

3.后序遍历(递归)postorder

时间复杂度O(N)
空间复杂度O(N)

在这里插入图片描述

4. 斐波那契数

  1. 普通递归
public int fib(int n) {
    if (n < 2)
        return n;
    return fib(n - 1) + fib(n - 2);
}

  1. 进阶操作
    递归计算中很多都是重复计算,当n越大,重复的越多,
    所以可以使用一个map把计算过的值存起来,每次计算的时候先看map中有没有,
    如果有就表示计算过,直接从map中取,
    如果没有就先计算,计算完之后再把结果存到map中
class Solution {
    int constant = 1000000007;

    public int fib(int n) {
       HashMap<Integer,Integer> map = new HashMap<>();
       return fib(n, map);
    }

    public int fib(int n, HashMap<Integer,Integer> map){
        if(n<2) return n;
        if(map.containsKey(n)){
            return map.get(n);
        }
        int first = fib(n-1,map) % constant;
        map.put(n-1,first);
        int second = fib(n-2,map) % constant;
        map.put(n-2,second);
        int result = (first + second) % constant;
        map.put(n,result);
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值