聚类算法
AI小小白
电子科技大学在读 欢迎交流
展开
-
机器学习——聚类——密度聚类法——OPTICS
目录理论部分1.1 提出背景1.2 OPTICS算法1.2.1 基本概念理论部分1.1 提出背景在DBSCAN算法中,需要人为确定领域半径ϵ\epsilonϵ和密度阈值MMM,同时该算法的性能又对这两个超参数非常敏感,不同的初始参数设定会导致完全不同的结果。基于此,学者们提出了新的聚类算法OPTICS。该聚类算法同样也是基于密度聚类的算法,与DBSCAN不同的是,该算法的设计使得其对初始超参数的设定敏感度较低。1.2 OPTICS算法1.2.1 基本概念·核心距离一个对象ppp的核心距离定义为原创 2020-12-05 20:37:55 · 7373 阅读 · 5 评论 -
机器学习——聚类——密度聚类法——DBSCAN
目录理论部分1.1 提出背景1.2 常见算法1.3 DBSCAN算法1.3.1 基本概念1.3.2 算法流程1.3.3 参数设置1.3.3 优点1.3.4 缺点1.3.5 可视化结果展示1.4 评估指标代码部分2.1 不使用sklearn实现2.2 使用sklearn实现理论部分1.1 提出背景与K-means算法基于距离聚类不同,DBSCAN算法是基于样本点密度进行聚类。基于距离的聚类方法只适用于凸型数据尤其是球状分布的数据,而难以处理非凸数据,而密度聚类法可以很好地解决这个问题,密度聚类法的基本思原创 2020-11-23 17:59:13 · 1413 阅读 · 0 评论 -
机器学习——分级聚类法介绍及其Python实现
目录聚类分析概念1.1 为什么聚类1.2 聚类到底是什么1.3 聚类与分类区别1.4 相似性与距离聚类1.5 相似性的测度特征相似度测度与聚类准则分级聚类法聚类分析概念1.1 为什么聚类之所以要聚类,是因为当今的数据量剧增(数据爆炸),导致我们检索信息时成本大大增加。如果可以找到一种计数可以自动分析数据,那么将大大节约资源。1.2 聚类到底是什么聚类定义:给定一组无标签样本,按照各样本间...原创 2020-04-07 12:24:41 · 10028 阅读 · 2 评论