机器学习
AI小小白
电子科技大学在读 欢迎交流
展开
-
机器学习——回归——一元线性回归
理论部分1.1 回归问题回归与分类不同,分类的目的是区分不同样本的类别,而回归问题则是要求预测输入变量与输出变量间的关系,即研究输出关于输入的函数映射关系。回归问题的学习过程等价于拟合过程:选择一条曲线使得其能够较为良好地拟合数据点的分布。1.2 回归问题分类回归问题依据不同的标准可以划分为不同的类别。例如,依据输入与输出之间的函数关系,可以分为线性回归与非线性回归,或者是一元回归与多元回归。依据输出变量取值的离散与连续性,可以分为离散回归与连续回归。1.3 线性回归线性回归指输入变量最高次数为原创 2020-12-09 11:55:39 · 3123 阅读 · 1 评论 -
机器学习——聚类——密度聚类法——OPTICS
目录理论部分1.1 提出背景1.2 OPTICS算法1.2.1 基本概念理论部分1.1 提出背景在DBSCAN算法中,需要人为确定领域半径ϵ\epsilonϵ和密度阈值MMM,同时该算法的性能又对这两个超参数非常敏感,不同的初始参数设定会导致完全不同的结果。基于此,学者们提出了新的聚类算法OPTICS。该聚类算法同样也是基于密度聚类的算法,与DBSCAN不同的是,该算法的设计使得其对初始超参数的设定敏感度较低。1.2 OPTICS算法1.2.1 基本概念·核心距离一个对象ppp的核心距离定义为原创 2020-12-05 20:37:55 · 7372 阅读 · 5 评论 -
机器学习——聚类——密度聚类法——DBSCAN
目录理论部分1.1 提出背景1.2 常见算法1.3 DBSCAN算法1.3.1 基本概念1.3.2 算法流程1.3.3 参数设置1.3.3 优点1.3.4 缺点1.3.5 可视化结果展示1.4 评估指标代码部分2.1 不使用sklearn实现2.2 使用sklearn实现理论部分1.1 提出背景与K-means算法基于距离聚类不同,DBSCAN算法是基于样本点密度进行聚类。基于距离的聚类方法只适用于凸型数据尤其是球状分布的数据,而难以处理非凸数据,而密度聚类法可以很好地解决这个问题,密度聚类法的基本思原创 2020-11-23 17:59:13 · 1413 阅读 · 0 评论 -
机器学习——聚类——距离聚类法——K-means
目录理论部分1.1 聚类概念1.1.1 定义1.1.2 与分类的区别1.2 相似度测量1.2.1 欧式距离1.2.2 马氏距离1.3 聚类准则1.3.1 试探方法1.3.2 聚类准则法1.4 常见聚类方法1.5 K均值聚类1.5.1 K均值聚类思想1.5.2 K均值聚类流程1.5.3 实例1.5.4 K均值聚类优点1.5.5 K均值聚类缺点1.6 评估指标代码部分2.1 K均值代码实现2.2 评估指标代码实现2.3 整体实现理论部分1.1 聚类概念1.1.1 定义定义: 对一批没有标出类别的模式样本原创 2020-11-20 21:50:47 · 19006 阅读 · 2 评论 -
机器学习——《统计学习方法》学习笔记——统计学习及监督学习概论
目录1.统计学习1.1 统计学习定义1.2 统计学习流程2.统计学习分类2.1 基本分类2.1.1 监督学习2.1.2 无监督学习2.2 按模型分类2.3 按算法分类2.4 按技巧分类3.统计学习三要素4.模型评估与模型选择5.正则化与交叉验证1.统计学习1.1 统计学习定义统计学习是关于计算机基于数据构建概论模型并运用模型进行对数据的分析与预测的一门学科。解释:1.“计算机”表示统计学习以计算机为平台。2.“基于数据”表示统计学习是数据驱动的学科,即以研究数据为目的,对于数据的选择往往重要于对原创 2020-07-26 01:12:40 · 709 阅读 · 3 评论 -
深度学习——优化算法细谈(梯度下降/随机梯度下降/小批量梯度下降/动量法/Adagrad/RMSprop/Adadealt/Adam)及时实现
本文原创 2020-07-04 01:39:33 · 2789 阅读 · 12 评论 -
Andrew Ng Machine Learning——Work(Six)——Support Vector Machine(Based on Python 3.7)
Python 3.7所用数据集链接:目录Support Vector MachineLinear kernel1.0 Pcakage1.1 Load data1.2 Visualization data1.3 Train model1.4 Decision boundary1.5 Visualization resultNonlinear kernel2.0 Package2.1 Load data2.2 View data2.3 Train model2.4 D...原创 2020-05-19 13:29:43 · 419 阅读 · 2 评论 -
Andrew Ng Machine Learning——Work(Five)——Bias and Variance(Based on Python 3.7)
Python 3.7所用数据集链接:所用数据集链接(ex5data1.mat),提取码:c3yy目录Bias and VarianceRegularized Linear Regression1.0 Package1.1 Load data1.2 Preprocess data1.3 Visualization data1.4 Regularized costfunction1.5 Regularized gradient1.6 Train model1....原创 2020-05-17 13:01:36 · 1057 阅读 · 10 评论 -
Andrew Ng Machine Learning——Work(Four)——Feedback neural network(Based on Python 3.7)
Python 3.7所用数据集链接:反向传播网络所用数据集(ex4data1.mat,ex4weights.mat),提取码:c3yy目录Feedback neural network1.1 Load data1.2 Visualization data1.3 Data preprocess1.4 Load weights1.5 Unrolling data1.6 Deserialize data1.7 Sigmoid function1.8 Sigmoid ...原创 2020-05-12 23:27:26 · 1567 阅读 · 2 评论 -
Andrew Ng Machine Learning——Work(Three)——Feedforward neural network(Based on Python 3.7)
Python 3.7所用数据集链接:前馈神经网络所用数据及权重(ex3data1.mat,ex3weights.mat),提取码:c3yyFeedforward neural network题目:仍然是上次手写数字识别的主题,这次用神经网络实现是为了展示神经网络相对于传统机器学习算法的强大,本次代码会非常简短(因为权重已经训练好了),在下一节中,我们将开始反向传播网络的设计,届时会从零开始书写。1.0 Package先导入相应包:import num...原创 2020-05-10 22:53:13 · 2428 阅读 · 17 评论 -
Andrew Ng Machine Learning——Work(Three)——Mult-classification(Based on Python 3.7)
Python 3.7所用数据集链接:目录Mult-classification1.0 Package1.1 Load data1.2 Visualization data1.3 Data preprocess1.4 Sigmoid function1.5 Regularized costfunction1.6 Regularized gradient1.7 Train model1.8 Model predict1.9 Evalute model1.10 A...原创 2020-05-10 13:47:35 · 2584 阅读 · 19 评论 -
Andrew Ng Machine Learning——Work(Two)——Logistic regression——Regularized(Based on Python 3.7)
Python 3.7所用数据集链接:目录Regularized Logistic regression1.0 Package1.1 Load data1.2 Visualization data1.3 Data preprocess1.4 Feature mapping1.5 Sigmoid function1.6 Regularized costunction1.7 Regularized gradientfunction1.8 Train model1...原创 2020-05-09 13:03:42 · 3334 阅读 · 20 评论 -
Andrew Ng Machine learning——Work(One)——Logistic regression——Bipartition(Based on Python 3.7)
Python 3.7所用数据链接:二元逻辑回归数据(ex2data2.txt),提取码:c3yy目录Bipartition Logistic regression1.0 Package1.1 Load data1.2 Visualization data1.3 Data processing1.4 Costfunction1.5 Gradientdescent1.6 Training model1.7 Plot Decision Boundary1.8 Ev...原创 2020-05-08 23:26:22 · 3809 阅读 · 22 评论 -
Andrew Ng Machine learning——Work(One)——Linear regression——Multivariate(Based on Pyhton 3.7)
Pyhton 3.7目录Multivariate linear regression1.0 package1.1 load data1.2 visualization data1.3 data processing1.4 define costfunction1.5 gradientdescend1.6 visualization resultMultivariate linear reg...原创 2020-05-06 18:37:17 · 2950 阅读 · 22 评论 -
Andrew Ng Machine learning——Work(One)——Linear regression——Univerate(Based on Python 3.7)
Python 3.7目录Univerate linear regression1.0 package1.1 load data1.2 visualization data1.3 data preprocessing1.4 define costfunction1.5 gradientdescend1.6 visualization result...原创 2020-05-06 12:26:45 · 3228 阅读 · 22 评论