Unet代码实现(PyTorch)

该代码实现了一个基于PyTorch的UNet模型,用于图像分割任务。模型包括下采样和上采样模块,每个模块由卷积层、批量归一化、LeakyReLU激活函数和Dropout层组成。在上采样过程中,采用了双线性插值和特征拼接来恢复分辨率。
摘要由CSDN通过智能技术生成
import torch
import torch.nn as nn
from torch.nn import functional as F


# 基本卷积块, 长宽不变,in_channels -> out_channels
class Conv(nn.Module):
    def __init__(self, C_in, C_out):
        super(Conv, self).__init__()
        self.layer = nn.Sequential(
            nn.Conv2d(C_in, C_out, 3, 1, 1),
            nn.BatchNorm2d(C_out),
            # 防止过拟合
            nn.Dropout(0.3),
            nn.LeakyReLU(),

            nn.Conv2d(C_out, C_out, 3, 1, 1),
            nn.BatchNorm2d(C_out),
            # 防止过拟合
            nn.Dropout(0.4),
            nn.LeakyReLU(),
        )

    def forward(self, x):
        return self.layer(x)

# 下采样模块,长宽下采样2倍,通道数不变
class DownSampling(nn.Module):
    def __init__(self, C):
        super(DownSampling, self).__init__()
        self.Down = nn.Sequential(
            # 使用卷积进行2倍的下采样,通道数不变
            nn.Conv2d(C, C, 3, 2, 1),
            nn.LeakyReLU()
        )

    def forward(self, x):
        return s
以下是一个使用PyTorch实现UNet模型的代码,供参考: ```python import torch import torch.nn as nn class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() # if using bilinear, use the normal convolutions to reduce the number of channels if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is NCHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) class UNet(nn.Module): def __init__(self, n_channels, n_classes, bilinear=True): super(UNet, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.inc = DoubleConv(n_channels, 64) self.down1 = Down(64, 128) self.down2 = Down(128, 256) self.down3 = Down(256, 512) factor = 2 if bilinear else 1 self.down4 = Down(512, 1024 // factor) self.up1 = Up(1024, 512 // factor, bilinear) self.up2 = Up(512, 256 // factor, bilinear) self.up3 = Up(256, 128 // factor, bilinear) self.up4 = Up(128, 64, bilinear) self.outc = OutConv(64, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) logits = self.outc(x) return logits ``` 这个代码实现了一个标准的UNet模型,包括一个输入层,四个下采样层,四个上采样层和一个输出层。可以根据需要进行修改。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值