数学中转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。
– – 恩格斯
数学史
一、微积分简史
微积分也叫无穷小分析,是数学的一个重要分支,主要研究极限、导数、积分和无穷级数。它是长期积累和发展的结果,在17C,由于牛顿和莱布尼兹所做的关键性工作,宣布了微积分的最终诞生,后来又经过了对其理论和理论基础两百年时间的完善化,才发展为现代的微积分或分析学。
微积分的发展可分为四个阶段。
第一阶段:1000年之前,在这个阶段数学的基本计算和符号系统逐渐完善
第二阶段:1000年—1600年,这是微积分的积累时期或准备时期
第三阶段:1600年—1900年,这是微积分的成熟期,形成了数学的基本学科:分析学。
第四阶段:1900年—至今,称为微积分的深化期。
在这个阶段,微积分向着深化的方向发展,已经不再是局限于微积分的原始问题(有限维问题),而借助于集合论和公理化方法的发展,分析向无限维的问题拓展,创立诸如泛函分析、变分学及随机分析等等
牛顿莱布尼兹之争:牛顿早莱布尼兹四年出生,且1667年牛顿手稿完成了代表了微积分发明的《流数法》(发表时间为1671年),1684年莱布尼茨发表第一篇微分论文,定义了微分概念,采用了微分符号dx,dy,1686年他又发表了积分论文,讨论了微分与积分,使用了积分符号 ∫,1674年11月11日他完成一套完整的微分学。当莱布尼兹发表声明后,牛顿发现这不是我之前都发现的东东嘛,于是他站出来说:你,抄袭!以时间点来看,牛顿的确先于莱布尼兹发现微积分,但在那种车马很慢,英德两国相距甚远的情况下,莱布尼兹若没有看过牛顿的手稿,那他便是微积分的发明者,毕竟他的微分学远远完善于牛顿,牛顿的发现更像是将数学作为物理的工具使用罢了。但,当时,牛顿声望更高,影响更大,而且还匿名写信控诉莱布尼兹抄袭行为(感觉不正派了),最后啊,包括莱布尼兹本人都没有否认牛顿首先发现微积分,于是莱布尼兹被隐匿了百年,后来才被正名。
有关牛顿莱布尼兹的个人经历以及微积分之争挺有意思,伟人的成就也许是我们普通人倾尽一生难以企及的,但真正的去了解这个人就会发现,他不过千千万万众生中的一个。
二、代数发展史
代数式是研究模式结构、关系和量的数学分支。初等代数主要解决算术运算和方程的求解问题,后来代数研究到各种模式的结构、关系和量,如群、环、域、线性空间等都是代数研究的基本结构
代数的发展大致也可划分为四阶段
第一阶段:公元820年代数学的创立,代数由具体载体到符号化的实现
第二阶段:公元820年—1832年,完成了初等代数的基本理论,给出了二次、三次、四次方程的求解方式
第三阶段:1832年—1931年,范.德.瓦尔登《代数学》出版,这标志着近世代数基本理论的建立
第四阶段:1931年—至今
时间轴
1832年,伽(ga)罗瓦证明了代数方程可解性的一般条件
1847年,布尔 在《逻辑的数学分析》中形式化了符号逻辑,称布尔代数
1854年,黎曼引入了黎曼几何
1858年,莫比乌斯发明莫比乌斯带
1870年,克罗内克给出交换群的定义
……
三、几何发展史
几何,英文为Geometry,由希腊文演变而来,原本是土地测量之意。明代徐光启和天主教耶稣会传教士利玛窦翻译欧几里得的《几何原本》时将Geometry翻译为几何学。
几何学是研究形的科学,主要以视觉思维为主导,培养人的观察能力、空间想象能力与空间凝聚力。
几何的发展分为四个阶段
第一阶段:—公元212年(阿基米德去世),欧几里得创作《几何原本》等初等几何成就
第二阶段:—1600年,初等代数逐渐成熟,出现了解析几何
第三阶段:1600年—1900年,建立了解析几何、非欧几何,出现了拓扑学
第四阶段:1900年—至今
时间结点重要事件
第三阶段,笛卡儿和费马创立解析几何,这是微积分和定量物理科学发展的前提
18C-19C高斯,黎曼等人均有不凡的成就,慢慢理清楚再细说
四、统计概率简史
统计学statistics在18C中叶,德国学者创造,解释为由国家收集、处理和使用的数据。
有意思的是,概率理论的诞生,由巴斯卡和费马关于赌博引出的讨论而创立。
1654年,一个名叫梅累的骑士就“两个赌徒约定赌若干局, 且谁先赢 c 局便算赢家, 若在一赌徒胜 a 局 (a小于c),另一赌徒胜b局(b小于c)时便终止赌博,问应如何分赌本” 为题求教于帕斯卡, 帕斯卡与费马通信讨论这一问题, 于1654 年共同建立了概率论的第一个基本概念。