数学史

数学中转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。
– – 恩格斯

数学史

一、微积分简史

微积分也叫无穷小分析,是数学的一个重要分支,主要研究极限、导数、积分和无穷级数。它是长期积累和发展的结果,在17C,由于牛顿和莱布尼兹所做的关键性工作,宣布了微积分的最终诞生,后来又经过了对其理论和理论基础两百年时间的完善化,才发展为现代的微积分或分析学。

微积分的发展可分为四个阶段。

第一阶段:1000年之前,在这个阶段数学的基本计算和符号系统逐渐完善
第二阶段:1000年—1600年,这是微积分的积累时期或准备时期
第三阶段:1600年—1900年,这是微积分的成熟期,形成了数学的基本学科:分析学。
第四阶段:1900年—至今,称为微积分的深化期。
在这个阶段,微积分向着深化的方向发展,已经不再是局限于微积分的原始问题(有限维问题),而借助于集合论和公理化方法的发展,分析向无限维的问题拓展,创立诸如泛函分析、变分学及随机分析等等

牛顿莱布尼兹之争:牛顿早莱布尼兹四年出生,且1667年牛顿手稿完成了代表了微积分发明的《流数法》(发表时间为1671年),1684年莱布尼茨发表第一篇微分论文,定义了微分概念,采用了微分符号dx,dy,1686年他又发表了积分论文,讨论了微分与积分,使用了积分符号 ∫,1674年11月11日他完成一套完整的微分学。当莱布尼兹发表声明后,牛顿发现这不是我之前都发现的东东嘛,于是他站出来说:你,抄袭!以时间点来看,牛顿的确先于莱布尼兹发现微积分,但在那种车马很慢,英德两国相距甚远的情况下,莱布尼兹若没有看过牛顿的手稿,那他便是微积分的发明者,毕竟他的微分学远远完善于牛顿,牛顿的发现更像是将数学作为物理的工具使用罢了。但,当时,牛顿声望更高,影响更大,而且还匿名写信控诉莱布尼兹抄袭行为(感觉不正派了),最后啊,包括莱布尼兹本人都没有否认牛顿首先发现微积分,于是莱布尼兹被隐匿了百年,后来才被正名。

有关牛顿莱布尼兹的个人经历以及微积分之争挺有意思,伟人的成就也许是我们普通人倾尽一生难以企及的,但真正的去了解这个人就会发现,他不过千千万万众生中的一个。

二、代数发展史

代数式是研究模式结构、关系和量的数学分支。初等代数主要解决算术运算和方程的求解问题,后来代数研究到各种模式的结构、关系和量,如群、环、域、线性空间等都是代数研究的基本结构

代数的发展大致也可划分为四阶段

第一阶段:公元820年代数学的创立,代数由具体载体到符号化的实现
第二阶段:公元820年—1832年,完成了初等代数的基本理论,给出了二次、三次、四次方程的求解方式
第三阶段:1832年—1931年,范.德.瓦尔登《代数学》出版,这标志着近世代数基本理论的建立
第四阶段:1931年—至今

时间轴
1832年,伽(ga)罗瓦证明了代数方程可解性的一般条件
1847年,布尔 在《逻辑的数学分析》中形式化了符号逻辑,称布尔代数
1854年,黎曼引入了黎曼几何
1858年,莫比乌斯发明莫比乌斯带
1870年,克罗内克给出交换群的定义
……

三、几何发展史

几何,英文为Geometry,由希腊文演变而来,原本是土地测量之意。明代徐光启和天主教耶稣会传教士利玛窦翻译欧几里得的《几何原本》时将Geometry翻译为几何学。
几何学是研究形的科学,主要以视觉思维为主导,培养人的观察能力、空间想象能力与空间凝聚力。

几何的发展分为四个阶段

第一阶段:—公元212年(阿基米德去世),欧几里得创作《几何原本》等初等几何成就
第二阶段:—1600年,初等代数逐渐成熟,出现了解析几何
第三阶段:1600年—1900年,建立了解析几何、非欧几何,出现了拓扑学
第四阶段:1900年—至今

时间结点重要事件

第三阶段,笛卡儿和费马创立解析几何,这是微积分和定量物理科学发展的前提
18C-19C高斯,黎曼等人均有不凡的成就,慢慢理清楚再细说

四、统计概率简史

统计学statistics在18C中叶,德国学者创造,解释为由国家收集、处理和使用的数据。

有意思的是,概率理论的诞生,由巴斯卡和费马关于赌博引出的讨论而创立。

1654年,一个名叫梅累的骑士就“两个赌徒约定赌若干局, 且谁先赢 c 局便算赢家, 若在一赌徒胜 a 局 (a小于c),另一赌徒胜b局(b小于c)时便终止赌博,问应如何分赌本” 为题求教于帕斯卡, 帕斯卡与费马通信讨论这一问题, 于1654 年共同建立了概率论的第一个基本概念。

原书序: 代数学是数学的一个重要的基础的分支,历史悠久.我国古代在代数学方面有光辉的成就.一百多年来,尤其是20世纪以来,随着数学的发展以及应用的需要,代数学的研究对象以及研究方法发生了巨大的变革.一系列的新的代数领域被建立起来,大大地扩充了代数学的研究范围,形成了所谓近世代数学.它与以代数方程的根的计算与分布为研究中心的古典代数学有所不同,它是以研究数字、文字和更一般元素的代数运算的规律及各种代数结构 群、环、代数、域、格等的性质为其中心问题的.由于代数运算贯穿在任何数学理论和应用问题里,也由于代数结构及其中元素的一般性,近世代数学的研究在数学中是具有基本性的.它的方法和结果渗透到那些与它相接近的各个不同的数学分支中,成为一些有着新面貌和新内容的数学领域一一代数数论、代数几何、拓扑代数、Lie群和Lie代数、代数拓扑、泛函分析等.这样,近世代数学就对于全部现代数学的发展有着显著的影响,并且对于一些其他的科学领域(如理论物理学、计算机原理等)也有较直接的应用。 历史上,近世代数学可以说是从19世纪之初发生的,Galois应用群的概念对于高次代数方程是否可以用根式来解的问题进行了研究并给出彻底的解答,他可以说是近世代数学的创始者.从那时起,近世代数学由萌芽而成长而发达.大概由19世纪的末叶开始,群以及紧相联系着的不变量的概念,在几何上、在分析上以及在理论物理上,都产生了重大的影响.深刻研究群以及其他相关的概念,如环、理想、线性空间、代数等,应用于代数学各个部分,这就形成近世代数学更进一步的演进,完成了以前独立发展着的三个主要方面——代数数论、线性代数及代数、群论的综合.对于这一步统一的工作,近代德国代数学派起了主要的作用.由Dedekind及Hilbert于19世纪末叶的工作开始,steinitz于1911年发表的论文对于代数学抽象化工作贡献很大,其后自1920年左右起以Noether?和Artin及她和他的学生们为中心,近世代数学的发展极为灿烂。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值