1,系统开发和运行知识.
以读教材为主,上面是重要程度.
螺旋模型强调风险分析.
关键路径:
一个大的任务,可以分为若干个子任务
如单元测试,集成分析,验收确认.
这里必须先进行单元测试才可以进行集成分析,那么集成分析就是单元测试的后继.其中每一个都是一个活动(任务).
在上图中.一个圆圈表示一个节点,一条边表示一个任务.
之后会了解到,一个圆圈也可以表示任务.
上图中,在节点1处,活动A就结束了.s表示开始时间.同样2节点,表示的是b活动结束的时间.
其中3节点有两条输入的箭头,说明d,e都完成了才可以到达3节点.2节点有两条出的箭头,说明2节点后可以开始两个任务.
从这里也可以看出,前驱与后继节点不唯一.
最早开始时间与最早结束时间之间的差值就是工程持续时间.
同理,最晚开始时间与最晚结束时间之间也有同样的关系.
松弛时间=最晚开始-最早开始=最晚结束-最早结束
并且这里有关键活动和关键路径的定义.
这里是找关键路径的方法.这里需要注意RERT图需要所有路径都完成了,才能说整个工期完成了.这里是就是前面说的有多条箭头流入的节点,需要所有箭头都完成才能开始.
所以这里取得是每条路径的最长路径,作为关键路径,时间总和为总工期.
这里的手绘图中就是将活动作为圆圈的表示方法.
对于图很复杂,或者是需要求松弛时间的RERT图,我们一般用第二种方法.需要了解一下概念
这里的最早开始时间也比较好理解.就是到该节点之前的最长路径.
这里的最晚开始时间,就是总工期-从该节点到结束的最长路径.
如节点2的最早开始时间是9,最晚开始时间为13-4=9,所以这条就是关键路径上的一个节点,关键活动.
节点四的松弛时间为10-5=5天.
活动的最早开始时间,是起始节点的最早开始意思是:G活动的最早开始时间就是节点4的最早开始时间.这个箭头是从节点4开始的,所以节点4为这个活动的起始节点.
活动的最晚开始时间,依然是倒着来,如D的最晚开始时间,就是节点3的最晚开始时间-d的持续时间:10-5=5
第二种方法:先写成每个节点的最早开始时间.
然后再倒着算,最晚开始时间.总工程时间-节点到终点最长路径.
我们求节点的松弛时间就将两个括号中的数字相减,而求活动的松弛时间就是起始节点的最早开始时间与(后继节点的最晚开始时间-活动持续时间)之差.
这里我们需要由表格来列出RERT图,这里简单的方法是按前驱节点串起来,列出活动为圆圈的图.
对于这种图,我们只要有括号中的相减,就可以得到活动的松弛时间.这道题目比较简单,但是对于活动型的图,也只能是这种形式.不会出现,多流出的情况,因为任务完成时间是固定的.不能说c可能5天也可以7天完成.
这里第二题,测试是为了排除测试的错误,而不是证明程序的正确性.
这道题是RERT图,注意在节点图中,找最早开始时间,注意多流入节点如(I),在倒着求最晚开始时候时,注意多流出节点如(b,e,i)这时候是取最小值.如e节点,我们用16-4=12,11-4=7,所以取7.
这道题,答案为d,b
首先,第一小问,最少时间为20天,活动从什么时候开始没有影响.因为求的是一个差值,就是20.
第二问,就与从第几天开始有关了,需要在上图的基础上,加一.
然后,这里只要求最早开始时间,所以最晚开始时间可以不需要写成.
其次,特别注意在求最晚开始时间的时候,特别注意,两个流出的节点.对于这种节点需要取最小的那个.
答案为c,a
答案为:d,b
只要求出关键路径,并且b不在关键路径上.
并且这道题,说明活动型RERT图也有多出和多入的情况.
答案为:b
这里b,c,d一定有一个在关键路径上.
答案为:b