算法设计与分析第一章课后作业

这篇博客是关于算法设计与分析的第一章课后作业,内容涉及递归概念、背包问题的贪心策略、算法的解题方法、渐进复杂性以及算法的时间和空间复杂性分析。作业涵盖了多项选择题,对算法的基本特性、描述方式、复杂性衡量标准等方面进行了深入探讨。
摘要由CSDN通过智能技术生成

第一章

一.单选题
1
【单选题】子程序(包括函数和方法)是用来被调用的,递归指的是

A、
不同子程序之间直接或间接调用的程序设计方法

B、
同一个子程序直接或间接调用自己的程序设计方法

C、
子程序向调用它的程序段返回结果的程序设计方法

D、
子程序不向调用它的程序段返回结果的程序设计方法

正确答案: B 我的答案:B得分: 4.0分
2
【单选题】背包问题: n个物品和1个背包。对物品i,其价值为vi,重量为wi,背包的容量为W。如何选取物品装入背包,使背包中所装入的物品的总价值最大?物品可以分割。该问题的贪心策略是( )

A、
重量小的优先装入背包

B、
体积小的优先装入背包

C、
价值大的优先装入背包

D、
单位重量的价值大的优先装入背包

正确答案: D 我的答案:D得分: 4.0分
3
【单选题】什么是算法

A、
算法是计算方法

B、
算法是计算机程序

C、
算法是解题的方法和步骤

D、
算法是解题思路

正确答案: C 我的答案:C得分: 4.0分
4
【单选题】渐进复杂性的含义是()情况下的复杂性。

A、
在最佳输入情况下

B、
问题规模趋向于无穷大

C、
在最坏输入情况下

D、
平均各种输入之后

正确答案: B 我的答案:B得分: 4.0分
5
【单选题】分析算法的空间复杂性,应该分析

A、
算法在执行过程中存储空间的总占用量

B、
算法运行代码占用的存储量

C、
算法在执行过程中数据空间的占用量

D、
算法中定义的变量的数量

正确答案: C 我的答案:C得分: 4.0分
6
【单选题】允许使用递归程序设计方法的算法语言必须

A、
将局部变量和形式参数都分配在系统栈里

B、
将局部变量分配在系统栈里,将形式参数分配在系统堆里

C、
将局部变量分配在系统堆里,将形式参数分配在系统栈里

D、
将局部变量和形式参数都分配在系统堆里

正确答案: A 我的答案:A得分: 4.0分
7
【单选题】渐进复杂性的含义是( )情况下的复杂性。

### 数据结构算法第七章课后作业答案解析 对于数据结构算法课程中的第七章课后作业,不同版本的教材会有不同的侧重点和题目设置。以下是基于常见教材内容对这一章节可能涉及的知识点及其对应练习题目的解析。 #### 一、树的概念理解 针对树这种非线性的逻辑结构,在该章节通常会考察基本概念的理解程度,比如定义、性质以及分类等。例如: - **判断题**:一棵度为零的二叉树是一棵空树。(错误) 正确的说法应该是:“一颗仅含有根节点而无子结点的二叉树也称为‘单节点’或‘平凡’二叉树。”[^1] #### 二、遍历操作实现 掌握前序、中序、后续三种方式来访问二叉树各个顶点的方法非常重要。这里给出一段简单的Python代码用于演示如何通过递归方法完成这些遍历动作: ```python class TreeNode: def __init__(self, value=0, left=None, right=None): self.value = value self.left = left self.right = right def preorder_traversal(root): if root is not None: print(root.value) preorder_traversal(root.left) preorder_traversal(root.right) def inorder_traversal(root): if root is not None: inorder_traversal(root.left) print(root.value) inorder_traversal(root.right) def postorder_traversal(root): if root is not None: postorder_traversal(root.left) postorder_traversal(root.right) print(root.value) ``` 此段程序展示了如何构建一个基础的二叉树类`TreeNode`并实现了三个函数分别用来执行先序(`preorder`)、中序(`inorder`) 和 后序 (`postorder`) 的遍历过程[^2]。 #### 三、应用实例分析 实际应用场景下的问题解决能力也是考核的重点之一。以查找最小公共祖先为例,这是一个典型的利用二叉搜索特性解决问题的任务。下面是一个简化版的例子说明思路: 假设给定如下图所示的一颗BST(平衡二叉搜索树),我们需要找到两个指定数值所在位置之间的最近共同父辈节点的位置。 ![image](https://upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Binary_search_tree.svg/350px-Binary_search_tree.svg.png) 解决方案可以采用迭代法自底向上回溯路径直至遇到第一个分岔口即为目标结果;也可以借助于栈的数据结构保存沿途经过的所有节点以便随时比较两者间的关系变化情况[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值