从零开始搭建神经网络并将准确率提升至85%

我们在看一些关于深度学习的教材或者视频时,作者(讲解者)总是喜欢使用MNIST数据集进行讲解,不仅是因为MNIST数据集小,还因为MNSIT数据集图片是单色的。在讲解时很的容易达到深度学习的效果。
但是学习不能只止于此,接下来我们就使用彩色图片去训练一个模型。
最初我在设置网络结构去训练时,准确率才40%的样子,同时不能够收敛。后来结合着一些论文对神经网络有了一定的了解,接着就开始对网络进行优化,使得准确率逐渐的到了60%、70%、80%、90%……(最终训练准确率为99%,测试准确率为85%)

  1. 数据集介绍:
    在这里插入图片描述
    我相信接触过深度学习的小伙伴对这个数据集一定不陌生吧,这个就是CIFAR-10CIFAR-10数据集由 ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’ 组成的共10类32x32的彩色图片,一共包含60000张图片,每一类包含6000图片。其中50000张图片作为训练集,10000张图片作为测试集。
    下面就开始我们的训练:(说明:训练框架是pytorch

  2. 第一步:加载数据集
    如何加载呢:
    1 . 导入必要的第三方库

    import torch
    from torch import nn
    import torch.optim as optim
    import torch.nn.functional as F
    from torch.autograd import Variable
    import matplotlib.pyplot as plt
    from torchvision import transforms,datasets
    from torch.utils.data import DataLoader
    
    1. 下载数据集 (pytorch或者tensorflow都是预留了下载数据集的接口的,所以不需要我们再另外去下载)
    def plot_curve(data):   
    	fig = plt.figure()
    	plt.plot(range(len(data)), data, color='blue')
    	plt.legend(['value'], loc='upper right')
    	plt.xlabel('step')
    	plt.ylabel('value')
    	plt.show()
    transTrain=transforms.Compose([transforms.RandomHorizontalFlip(),  
                              transforms.RandomGrayscale(),
                              transforms.ToTensor(),
                              transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
    transTest=transforms.Compose([transforms.ToTensor(),
                              transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
    

    上述的代码中transforms是对数据进行预处理
    plot_curve函数是对后面的loss和acc进行简单的可视化处理

    # 这行代码是对数据进行加强
    transforms.RandomHorizontalFlip()
    transforms.RandomGrayscale()
    

    3.定义网络结构
    首先我们使用Lenet-5网络结构

    class Lenet5(nn.Module):
        def __init__(self):
            super(Lenet5, self).__init__()
            self.conv_unit = nn.Sequential(
                nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=0),
                nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
                nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=0),
                nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
            )
            self.fc_unit = nn.Sequential(
                nn.Linear(32*5*5, 32),
                nn.ReLU(),
                nn.Linear(32, 10)
            )
            tmp = torch.randn(2, 3, 32, 32)
            out = self.conv_unit(tmp)
            print('conv out:', out.shape)
        def forward(self, x):
            batchsz = x.size(0)
            x = self.conv_unit(x)
            x = x.view(batchsz, 32*5*5)
            logits = self.fc_unit(x)
            return logits
    

    在 PyTorch 中可以通过继承 nn.Module 来自定义神经网络,在 init() 中设定结构,在 forward() 中设定前向传播的流程。 因为 PyTorch 可以自动计算梯度,所以不需要特别定义 backward 反向传播。

  3. 定义 Loss 函数和优化器
    Loss使用CrossEntropyLoss (交叉熵损失函数)
    优化器使用Adam,当然使用SGD也可以

    loss = nn.CrossEntropyLoss()
    #optimizer = optim.SGD(self.parameters(),lr=0.01)
    optimizer = optim.Adam(self.parameters(), lr=0.0001)
    
  4. 训练

    for epoch in range(100):
        for i, (x, label) in enumerate(train_data_load):
            x, label = x.to(device), label.to(device)
            logits = net(x)
            loss = name(logits, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            trans_loss.append(loss.item())
        net.eval()
        with torch.no_grad():
            # test
            total_correct = 0
            total_num = 0
            for x, label in test_data_load:
                # [b, 3, 32, 32]
                # [b]
                x, label = x.to(device), label.to(device)
    
                # [b, 10]
                logits = net(x)
                # [b]
                pred = logits.argmax(dim=1)
                # [b] vs [b] => scalar tensor
                correct = torch.eq(pred, label).float().sum().item()
                total_correct += correct
                total_num += x.size(0)
                # print(correct)
            acc = total_correct / total_num
            test_acc.append(acc)
        print(epoch+1,'loss:',loss.item(),'test acc:',acc)
    plot_curve(trans_loss)
    plot_curve(test_acc)
    
    程序设定训练过程要经过 100 个 epoch,然后结束。
    结束之后我们来查看训练结果:
    

    在这里插入图片描述
    可以看到训练结果并不是很理想,所以接下来我们就需要对网络结构进行调整

  5. 调整方案一
    下面是笔者手动建立的三层卷积网络结构

    class CNN(nn.Module):
        def __init__(self):
            super(CNN,self).__init__()
            self.conv1=nn.Sequential(
                nn.Conv2d(3,16,kernel_size=3,stride=1,padding=1),
                nn.ReLU(True),
            )
            self.conv2=nn.Sequential(
                nn.Conv2d(16,32,kernel_size=5,stride=1,padding=2),
                nn.ReLU(True),
            )
            self.conv3=nn.Sequential(
                nn.Conv2d(32,64,kernel_size=5,stride=1,padding=2),
                nn.ReLU(True),
                nn.MaxPool2d(kernel_size=2,stride=2),
                nn.BatchNorm2d(64)
            )
            self.function=nn.Linear(15*15*64,10)
    
        def forward(self, x):
            out = self.conv1(x)
            out = self.conv2(out)
            out = self.conv3(out)
            out = out.view(out.size(0), -1)
            out = self.function(out)
            return out
    
    我们再来看看训练结果:
    

    在这里插入图片描述
    在这里插入图片描述
    可以看出来这个网络结构和上一个相比好了一点,但是不是很明显。

  6. 方案二
    开始是想着使用牛津大学VGG-16网络模型的,但是显存不够,只能自己去写一个了

    class CNN(nn.Module):
        def __init__(self):
            super(CNN,self).__init__()
            self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
            self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
            self.pool1 = nn.MaxPool2d(2, 2)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu1 = nn.ReLU()
    
            self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
            self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
            self.pool2 = nn.MaxPool2d(2, 2, padding=1)
            self.bn2 = nn.BatchNorm2d(128)
            self.relu2 = nn.ReLU()
    
            self.conv5 = nn.Conv2d(128, 128, 3, padding=1)
            self.conv6 = nn.Conv2d(128, 128, 3, padding=1)
            self.conv7 = nn.Conv2d(128, 128, 1, padding=1)
            self.pool3 = nn.MaxPool2d(2, 2, padding=1)
            self.bn3 = nn.BatchNorm2d(128)
            self.relu3 = nn.ReLU()
    
            self.conv8 = nn.Conv2d(128, 256, 3, padding=1)
            self.conv9 = nn.Conv2d(256, 256, 3, padding=1)
            self.conv10 = nn.Conv2d(256, 256, 1, padding=1)
            self.pool4 = nn.MaxPool2d(2, 2, padding=1)
            self.bn4 = nn.BatchNorm2d(256)
            self.relu4 = nn.ReLU()
    
            self.conv11 = nn.Conv2d(256, 512, 3, padding=1)
            self.conv12 = nn.Conv2d(512, 512, 3, padding=1)
            self.conv13 = nn.Conv2d(512, 512, 1, padding=1)
            self.pool5 = nn.MaxPool2d(2, 2, padding=1)
            self.bn5 = nn.BatchNorm2d(512)
            self.relu5 = nn.ReLU()
    
            self.fc14 = nn.Linear(512 * 4 * 4, 1024)
            self.drop1 = nn.Dropout2d()
            self.fc15 = nn.Linear(1024, 1024)
            self.drop2 = nn.Dropout2d()
            self.fc16 = nn.Linear(1024, 10)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = self.pool1(x)
            x = self.bn1(x)
            x = self.relu1(x)
    
            x = self.conv3(x)
            x = self.conv4(x)
            x = self.pool2(x)
            x = self.bn2(x)
            x = self.relu2(x)
    
            x = self.conv5(x)
            x = self.conv6(x)
            x = self.conv7(x)
            x = self.pool3(x)
            x = self.bn3(x)
            x = self.relu3(x)
    
            x = self.conv8(x)
            x = self.conv9(x)
            x = self.conv10(x)
            x = self.pool4(x)
            x = self.bn4(x)
            x = self.relu4(x)
    
            x = self.conv11(x)
            x = self.conv12(x)
            x = self.conv13(x)
            x = self.pool5(x)
            x = self.bn5(x)
            x = self.relu5(x)
            x = x.view(-1, 512 * 4 * 4)
            x = F.relu(self.fc14(x))
            x = self.drop1(x)
            x = F.relu(self.fc15(x))
            x = self.drop2(x)
            x = self.fc16(x)
            return x
    
  7. 方案二的训练结果
    方案二只训练了25个epoch,比较无奈显卡不好,GTX1050训练尽然用了45分钟,给我等死了,而且显卡温度还很高,哎,都是穷呀~~~~
    看看我的显卡温度,我都害怕
    在这里插入图片描述
    得让我的电脑降降温才行,咳咳,好了温度降下来了
    在这里插入图片描述
    不废话了,上最终的运行结果
    在这里插入图片描述
    在这里插入图片描述
    可以看到这个结果比前两个有了很大的提升,test acc已近到了83%,这仅仅只训练了25个epoch

  8. 最终代码如下

    import torch
    from torch import nn
    import torch.optim as optim
    import torch.nn.functional as F
    from torch.autograd import Variable
    import matplotlib.pyplot as plt
    from torchvision import transforms,datasets
    from torch.utils.data import DataLoader
    
    def plot_curve(data):
        fig = plt.figure()
        plt.plot(range(len(data)), data, color='blue')
        plt.legend(['value'], loc='upper right')
        plt.xlabel('step')
        plt.ylabel('value')
        plt.show()
    transTrain=transforms.Compose([transforms.RandomHorizontalFlip(),
                                  transforms.RandomGrayscale(),
                                  transforms.ToTensor(),
                                  transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
    transTest=transforms.Compose([transforms.ToTensor(),
                                  transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])
    # download data
    train_data=datasets.CIFAR10(root='./CIFAR',train=True,transform=transTrain,download=True)
    test_data=datasets.CIFAR10(root='./CIFAR',train=False,transform=transTest,download=True)
    train_data_load=DataLoader(train_data,batch_size=100,shuffle=True,num_workers=2)
    test_data_load=DataLoader(test_data,batch_size=100,shuffle=False,num_workers=2)
    # definde CNN
    class CNN(nn.Module):
        def __init__(self):
            super(CNN,self).__init__()
            self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
            self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
            self.pool1 = nn.MaxPool2d(2, 2)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu1 = nn.ReLU()
    
            self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
            self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
            self.pool2 = nn.MaxPool2d(2, 2, padding=1)
            self.bn2 = nn.BatchNorm2d(128)
            self.relu2 = nn.ReLU()
    
            self.conv5 = nn.Conv2d(128, 128, 3, padding=1)
            self.conv6 = nn.Conv2d(128, 128, 3, padding=1)
            self.conv7 = nn.Conv2d(128, 128, 1, padding=1)
            self.pool3 = nn.MaxPool2d(2, 2, padding=1)
            self.bn3 = nn.BatchNorm2d(128)
            self.relu3 = nn.ReLU()
    
            self.conv8 = nn.Conv2d(128, 256, 3, padding=1)
            self.conv9 = nn.Conv2d(256, 256, 3, padding=1)
            self.conv10 = nn.Conv2d(256, 256, 1, padding=1)
            self.pool4 = nn.MaxPool2d(2, 2, padding=1)
            self.bn4 = nn.BatchNorm2d(256)
            self.relu4 = nn.ReLU()
    
            self.conv11 = nn.Conv2d(256, 512, 3, padding=1)
            self.conv12 = nn.Conv2d(512, 512, 3, padding=1)
            self.conv13 = nn.Conv2d(512, 512, 1, padding=1)
            self.pool5 = nn.MaxPool2d(2, 2, padding=1)
            self.bn5 = nn.BatchNorm2d(512)
            self.relu5 = nn.ReLU()
    
            self.fc14 = nn.Linear(512 * 4 * 4, 1024)
            self.drop1 = nn.Dropout2d()
            self.fc15 = nn.Linear(1024, 1024)
            self.drop2 = nn.Dropout2d()
            self.fc16 = nn.Linear(1024, 10)
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = self.pool1(x)
            x = self.bn1(x)
            x = self.relu1(x)
    
            x = self.conv3(x)
            x = self.conv4(x)
            x = self.pool2(x)
            x = self.bn2(x)
            x = self.relu2(x)
    
            x = self.conv5(x)
            x = self.conv6(x)
            x = self.conv7(x)
            x = self.pool3(x)
            x = self.bn3(x)
            x = self.relu3(x)
    
            x = self.conv8(x)
            x = self.conv9(x)
            x = self.conv10(x)
            x = self.pool4(x)
            x = self.bn4(x)
            x = self.relu4(x)
    
            x = self.conv11(x)
            x = self.conv12(x)
            x = self.conv13(x)
            x = self.pool5(x)
            x = self.bn5(x)
            x = self.relu5(x)
            x = x.view(-1, 512 * 4 * 4)
            x = F.relu(self.fc14(x))
            x = self.drop1(x)
            x = F.relu(self.fc15(x))
            x = self.drop2(x)
            x = self.fc16(x)
            return x
    
    device = torch.device('cuda')
    net=CNN().to(device)
    name = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    loss_num=0.0
    trans_loss=[]
    test_acc=[]
    for epoch in range(25):
        for i, (x, label) in enumerate(train_data_load):
            x, label = x.to(device), label.to(device)
            logits = net(x)
            loss = name(logits, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            trans_loss.append(loss.item())
        net.eval()
        with torch.no_grad():
            total_correct = 0
            total_num = 0
            for x, label in test_data_load:
                x, label = x.to(device), label.to(device)
                logits = net(x)
                pred = logits.argmax(dim=1)
                # [b] vs [b] => scalar tensor
                correct = torch.eq(pred, label).float().sum().item()
                total_correct += correct
                total_num += x.size(0)
            acc = total_correct / total_num
            test_acc.append(acc)
        print(epoch+1,'loss:',loss.item(),'test acc:',acc)
    plot_curve(trans_loss)
    plot_curve(test_acc)
    
  9. 总结
    由于笔者的设备问题(显卡太low)
    所以笔者优化的网络结构最终准确率能达到多少我也知道,我这里仅仅训练了25个epoch,有兴趣的小伙伴可以在自己的设备上运行运行,可以把最终的结果告诉我一下,万分感谢!!!!(后来在云端运行了一下,训练准确率为99%、 测试准确率为85.4%)也还不错,哈哈~~~
    这样一个神经网络的搭建和优化就结束了,由于笔者能力有限,也许上述阐述有误,请多多包含,有错误的地方欢迎指正,谢谢~~~~
    希望大家可以动手实践实践

  • 7
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陶陶name

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值