题目描述
n 个小朋友围成一圈,玩数数游戏。
小朋友们按顺时针顺序,依次编号为 1∼n。
初始时,1 号小朋友被指定为领头人。
游戏一共会行进 k 轮。
在第 i 轮中,领头人会从他的顺时针方向的下一个人开始,按顺时针顺序数 ai 个人。
其中,最后一个被领头人数到的人被淘汰出局,这也意味着该轮游戏结束。
出局者的顺时针方向的下一个人被指定为新领头人,引领新一轮游戏。
例如,假设当游戏即将开始第 ii 轮时,还剩下 55 个小朋友,编号按顺时针顺序依次为 8,10,13,14,16,并且当前领头人为 1313 号小朋友,ai=12,则第 i 轮游戏结束后,最后一个被数到的小朋友为 16 号小朋友,他将被淘汰出局,并且处于其下一位的第 8 号小朋友将被指定为新领头人。
现在,请你求出每一轮次被淘汰的小朋友的编号。
输入格式
第一行包含两个整数 n,k。
第二行包含 k 个整数 a1,a2,…,ak。
输出格式
一行 k 个整数,其中第 i 个整数表示在第 i 轮中被淘汰的小朋友的编号。
数据范围
前三个测试点满足 2≤n≤10。
所有测试点满足 2≤n≤100,1≤k≤n−1,1≤ai≤1e9。
输入样例1:
7 5
10 4 11 4 1
输出样例1:
4 2 5 6 1
输入样例2:
3 2
2 5
输出样例2:
3 2
题解
约瑟夫环的问题,数据比较小,就直接模拟了 。
周赛的时候用的数组来模拟(一次很笨拙的模拟),思路是用另一个bool数组来判断小朋友是否被淘汰,最后只过了一半的数据。
数组模拟
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int a[N];
bool b[N];
int main()
{
int n,k;
cin >> n >> k;
for(int i = 0;i < k;i ++)scanf("%d",&a[i]);
for(int i = 0,t = 1;i < k;i ++){
while(1){
if(t == n + 1)t = 1;
if(!a[i]){while(b[t])t++;b[t] = true;cout << t << " ";break;}
if(b[t++] == false)a[i]--;
}
}
return 0;
}
赛后数据公开发现只能过一半的样例的原因在于while(b[t])t++;在找下一个还在游戏中的小朋友时没有重置到1。但是这样会超时,只取余数即可。
修改之后的代码如下,主要加入了一个变量mod用来取模,不然会TLE,每次小朋友减少,mod值减一,并且在找还在游戏中的小朋友时超出n的范围置1。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110;
int a[N];
bool b[N];
int main()
{
int n,k,mod;
cin >> n >> k;
mod = n;
for(int i = 0;i < k;i ++)scanf("%d",&a[i]);
for(int i = 0,t = 1;i < k;i ++){
a[i] %= mod;
while(1){
if(t == n + 1)t = 1;
if(!a[i]){while(b[t]){t++;if(t == n + 1)t = 1;}b[t] = true;mod--;cout << t << " ";t++;break;}
if(b[t++] == false)a[i]--;
}
}
return 0;
}
优美的队列模拟
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
int main()
{
int n,k;
cin >> n >> k;
queue<int> q;
for (int i = 1; i <= n; i ++ )q.push(i);
while(k --){
int a;
cin >> a;
a %= q.size();
for(int i = 1;i <= a;i ++){
q.push(q.front());
q.pop();
}
cout << q.front() << ' ';
q.pop();
}
return 0;
}
还需要再努力,更好更快更优美!