Python使用小教程04——numpy+pandas实现分区统计

该博客介绍如何利用numpy和pandas的groupby功能替代for循环进行分区统计,提高计算效率。通过示例代码展示了如何计算矩阵区域的最大平方差,并提供了自定义函数的应用。这种方法利用了groupby的并行计算能力,显著提升了处理大型二维数据的速度。
摘要由CSDN通过智能技术生成

使用numpy和pandas进行分区统计
就可以不用for循环了
groupby是多线程的,比普通for循环快多了

import numpy as np
import pandas as pd

aa = np.ones((10, 10))
aa[1:3, 2:4] = 3
aa[5:8, 6:9] = 2

bb = np.ones((10, 10)) + 200
bb[4:9, 3:8] = 100


def max_square_dist(x):
    res = (x-np.nanmean(x))**2
    return np.nanmax(res)


def statistics_by_zone(area, img, func=None):
    """
	:param area: 2D-numpy
	:param img: 2D-numpy
	:param func: 自定义函数, 默认均值
	:return:
	"""
    info = {'area': area.flatten(),
            'img': img.flatten()}
    ds = pd.DataFrame(info)
    if func is not None:
        stat = ds.groupby('area').agg(func)
    else:
        stat = ds.groupby('area').agg('mean')

    return stat


print(statistics_by_zone(aa, bb))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值