运动规划学习小记录01——Linear MPC

学习前言

MPC什么的学着也太痛苦了。
在这里插入图片描述

源码下载

https://github.com/alexliniger/MPCC.git

相关求解器

基本概念

MPC

  1. 核心思想:以最优化方法求解最优控制器,其中优化方法大多时候是二次规划(Quadratic Programming)。区别于其他控制算法的关键在于采用滚动优化、滚动实施控制。
  2. “三大原理”:预测模型、滚动优化、反馈矫正。
  3. 抽象理解:在每一个采用时刻,根据获得的当前测量信息,在线求解一个有限时间开环优化问题,并将得到的控制序列的第一个元素作用于被控对象。在下一个采样时刻,重复上述过程:用新的测量值作为此时预测系统未来动态的初始条件,刷新优化问题并重新求解 。
  4. 直观理解:
    a. Model:System model;problem model;
    b. Prediction:State space(p,v,a); Input space(F); Parameter space(环境,无限维);
    c. Control: the process of choosing the best policy;
    在这里插入图片描述

反馈控制

优点:

  1. 设计简单;
  2. 考虑了误差;

缺点:

  1. 对复杂系统非平凡;
  2. 控制系数(control gains,Kp,Kv)需要手工调整;
  3. 无法同时处理一组动力和约束控制;
  4. 不关注未来决策,反应式控制,只考虑当前,十分短视;

最优控制

  1. 最优控制(optimal control)指的是在一定的约束情况下达到最优状态的系统表现,其中约束情况通常是实际环境所带来的限制,例如汽车中的油门不能无限大等。
  2. 最优控制强调的是“最优”,一般最优控制需要在整个时间域上进行求优化(从0时刻到正无穷时刻的积分开环),这样才能保证最优性,这是一种很贪婪的行为,需要消耗大量算力。同时,系统如果是一个时变系统,或者面临扰动的话,前一时刻得到的最优并不一定是下一时刻的最优值。
  3. 最优控制常用解法有: 变分法,极大值原理,动态规划,LQR;
  4. MPC仅考虑未来几个时间步,一定程度上牺牲了最优性。

MPC优点

  1. 考虑了参考与预测之间的误差;
  2. MPC可以处理约束,如安全性约束,上下阈值;
  3. MPC是一种向前考虑未来时间步的有限时域优化方法(一定的预测能力);
  4. 最优控制要求在整个时间优化,实际上MPC采用了一个折中的策略,既不是像最优控制那样考虑整个时域,也不是仅仅考虑当前,而是考虑未来的有限时间域,缩小了问题的规模
  5. 善于处理多输入多输出系统(MIMO),对全驱动系统、冗余驱动系统及欠驱动系统均有较好的应用结果;

Linear MPC实现思路

预测模型

在这里插入图片描述

问题模型

目标1: 从空间中的任意位置到原点;
目标2: 轨迹平滑;
优化目标函数1:
在这里插入图片描述
优化目标函数2:
在这里插入图片描述

硬约束

在这里插入图片描述

软约束

当约束条件不可避免的会被违反,为了防止求解器无解。引入软约束;
例如:约束②条件变为:
L足够大的话,不等式一定成立,所以要设置一个合理的L使不等式成立但也有足够的超出的风险
在这里插入图片描述
新的目标函数变为:
在这里插入图片描述

Linear MPC缺点

  1. 需要线性的预测模型,或者可线性化的模型(adaptiveMPC);
  2. 障碍物约束通常非凸;

Case Study

  • Nonlinear MPC for Quadrotor Fault-Tolerant Control
  • Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots
  • Corridor-based Model Predictive Contouring Control for Aggressive Drone Flight (https://github.com/ZJU-FAST-Lab/CMPCC.git)
  • EVA-planner: an EnVironmental Adaptive Gradient-based Local Planner for Quadrotors.(https://github.com/ZJU-FAST-Lab/EVA-planner.git)

参考资料

### 智能小车运动学模型及其仿真与控制算法 #### 1. 运动学模型概述 智能小车的运动学模型通常用于描述其位置、速度和方向的变化规律。这种模型可以将复杂的物理现象简化为一组易于处理的状态变量,便于后续控制算法的设计[^1]。 对于两轮差速驱动的小车,常见的运动学方程如下所示: ```python import numpy as np def kinematic_model(x, y, theta, v, omega, dt): """ 参数: x (float): 当前横向坐标 y (float): 当前纵向坐标 theta (float): 小车朝向角(弧度) v (float): 线速度 omega (float): 角速度 dt (float): 时间步长 返回: tuple: 更新后的状态 (x_new, y_new, theta_new) """ x_new = x + v * np.cos(theta) * dt y_new = y + v * np.sin(theta) * dt theta_new = theta + omega * dt return x_new, y_new, theta_new ``` 上述代码定义了基本的离散时间运动学模型,其中 `v` 表示线速度,`omega` 表示角速度,而 `(x, y)` 和 `theta` 则分别表示当前位置和航向角。 --- #### 2. LQR 控制器设计 LQR(Linear Quadratic Regulator)是一种经典的最优控制方法,适用于线性系统并最小化二次型代价函数。在自动驾驶路径跟踪中,可以通过调整权重矩阵 Q 和 R 来平衡误差收敛速率与控制输入大小之间的关系。 以下是基于 Matlab 的简单 LQR 设计流程: 1. 定义状态空间模型 \( \dot{x} = Ax + Bu \),其中 A 是系统矩阵,B 是输入矩阵; 2. 设置加权矩阵 Q 和 R; 3. 使用内置函数计算反馈增益 K; ```matlab % 定义参数 A = [0 0 1; 0 0 0; 0 0 0]; % 系统矩阵 B = [0; 1; 0]; % 输入矩阵 Q = diag([1, 1, 0.1]); % 状态权重矩阵 R = 0.1; % 控制输入权重 % 计算反馈增益 K = lqr(A, B, Q, R); disp('LQR 反馈增益:'); disp(K); ``` 此部分展示了如何通过调节 Q 和 R 来获得不同的控制效果。 --- #### 3. MPC 控制器设计 相比于 LQR 方法,MPC 更适合解决带有约束条件的问题,并且能够更好地适应复杂环境下的动态变化需求[^2]。 下面是一个简单的 Python 实现框架,展示如何利用 CasADi 工具包求解 MPC 优化问题: ```python from casadi import * # 创建符号变量 T = 5 # 预测时域长度 nx = 3 # 状态维度 nu = 2 # 控制输入维度 X = SX.sym('X', nx, T+1) # 状态序列 U = SX.sym('U', nu, T) # 控制输入序列 # 动力学模型 f_dyn = lambda x, u: vertcat( x[1], x[2], u[0]*cos(x[0]) - u[1] ) # 成本函数 cost_function = sum1(sum2((X[:,:] - X_ref)**2)) + sum1(sum2(U**2)) # 添加约束条件 constraints = [] for k in range(T): constraints += [X[:,k+1] == f_dyn(X[:,k], U[:,k])] opt_variables = reshape(U, nu*T, 1) nlp_prob = {'f': cost_function, 'x': opt_variables, 'g': vertcat(*constraints)} solver = nlpsol('solver', 'ipopt', nlp_prob) ``` 以上代码片段说明了如何设置动力学模型以及成本函数,并最终调用数值求解器得到最佳控制律。 --- #### 4. 总结 无论是采用传统 LQR 技术还是现代 MPC 方案,都需要先建立精确可靠的运动学模型作为基础支持。具体选择哪种技术取决于实际应用场景的要求——如果追求实时性和稳定性,则推荐使用 LQR;而对于更灵活的任务规划或者存在外部干扰的情况来说,MPC 显然更加合适一些。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值