2、梯度下降

(1)梯度下降类似贪心,能找到局部最优,不一定能找到全局最优

(2)梯度下降用于求极小值,下降方向是梯度的负方向

  

import numpy as np

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0
def forward(x):
    return x * w

#计算MSE
def cost(xs , ys):
    cost = 0
    for x, y in zip(xs, ys):
        y_pred = forward(x)
        cost += (y_pred - y) ** 2
    return cost / len(xs)

#求梯度
def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
    return grad / len(xs)

print('Predict (before training)', 4, forward(4))
for epoch in range(100):
    cost_val = cost(x_data, y_data)
    grad_val = gradient(x_data, y_data)
    w -= 0.01 * grad_val
    print('Epoch:', epoch, 'w', w, 'loss', cost_val)
print('Predict (after training)', 4, forward(4))

 根据梯度下降更新权重,最终的预测结果为:

(3)随机梯度下降:随机选一个损失loss

(4)梯度下降的性能低,时间复杂度低,随机梯度下降的性能高,时间复杂度高。为折衷取Batch,即批量的随机梯度下降,若干个分为一组求梯度下降,性能高、时间复杂度低

(5)梯度下降和随机梯度下降的主要区别:

   1>损失函数由cost()改为loss()。cost是计算所有训练数据的损失,loss是随机计算一个训练函数的损失。

   2>梯度函数gradient()由计算所有训练数据的梯度改为计算一个训练数据的梯度

import numpy as np

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0
def forward(x):
    return x * w

def loss(x , y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

#求梯度
def gradient(x, y):
    return 2 * x * (x * w - y)

print('Predict (before training)', 4, forward(4))

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        grad = gradient(x, y)
        w -= 0.01 * grad
        print('\tgrad:', x, y, grad)
        l = loss(x, y)

    print('progress:', epoch, 'w', w, 'loss', l)
print('Predict (after training)', 4, forward(4))

根据随机梯度下降更新权重,最终的预测结果为:
 

 可以看出随机梯度下降的结果比梯度下降的结果要好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值