puluter

一个OIer的博客

树状数组原理及模板


树状数组:

一. 作用:

1. 处理单点修改以及前缀查询

2. 特殊情况的区间修改与区间查询

二. 复杂度

修改: O(logn)

查询: O(logn)

空间: O(n)

三. 具体实现

生成

C[i]=Σa[j] (i-2^k

int lowbit(int x) {return x&-x;}
int work(int x) {int sum=0; for (;x;x-=lowbit(x)) sum+=C[x]; return sum;}
int Query(int l,int r) {return sum(r)-sum(l-1);}
C[1]=a[1];
C[2]=a[1]+a[2];
C[3]=a[3];
C[4]=a[1]+a[2]+a[3]+a[4];
C[5]=a[5];
C[6]=a[5]+a[6];
C[7]=a[7];
C[8]=a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8];

当ai增加x时如何修改C

(1) 令C[i]+=x。
(2) i+=lowbit(i)。
(3) 若i>n,退出,否则执行(1)。

void change(int i,int x){
    for (; i<=n; i+=lowbit(i)) C[i]+=x;
} 

区间增加,单点查询

令b[i]=a[i]-a[i-1]。
a[x]=∑b[j] (j<=x)
修改复杂度:O(1),查询复杂度(对b维护一个前缀和):O(1)


区间增加,区间查询和

b数组相关与上题相同
ans=(Σb[i])(i<=l)(r-l+1)-Σ(b[i]*i)(l

int a[10010];//数据 
int b[10010];//a[i]-a[i-1] 
int c[10010];//树状数组核心 

int lowbit(int x) {
    return x&-x;
}

void update(int x) {//更新单个c[x]
    c[x]=0; 
    for(int j=x-lowbit(x);j<=x;j++){
        c[x]+=a[j];
    }
}
void change(int i,int x) {//将a[i]的值增加x,并修改所有相关的c的值 
//  a[i]+=x;
    for(;i<=n;i+=lowbit(i))//n为数据的个数(a的长度) 
        c[i]+=x;
}

//单点修改,区间查询和 (35~43)
int preSum(int x) {//求前缀和 
    int sum=0;
    for(;x;x-=lowbit(x))
        sum+=c[x];
    return sum;
}
int query(int l,int r){
    return preSum(r)-preSum(l-1);
}

//区间增加,单点查询 (46~62)
int preB[10010];
void init() {
    preB[0]=0;
    for(int i=1;i<=n;i++){
        b[i]=a[i]-a[i-1];
        preB[i]=preB[i-1]+b[i];
    }
}
void modify(int l,int r,int v) {//[l,r]+v 
    b[l]+=v;
    b[r+1]-=v;
    for(int i=l;i<r+1;i++)
        preB[i]+=v;
}
int query(int x) {///查询a[x] 
    return preB[x];
}

//区间增加,区间查询和 (65~87)
int preB[10010];
void init() {
    preB[0]=0;
    for(int i=1;i<=n;i++){
        b[i]=a[i]-a[i-1];
        preB[i]=preB[i-1]+b[i];
    }
}
void modify(int l,int r,int v) {//[l,r]+v 
    b[l]+=v;
    b[r+1]-=v;
    for(int i=l;i<r+1;i++)
        preB[i]+=v;
}
int bii(int l,int r){
    int ans=0;
    for(int i=l;i<r+1;i++)
        ans+=b[i]*i;
    return ans;
}
int query(int l,int r) {
    return preB[l]*(r-l+1) - bii(l+1,r) + (preB[r+1]-preB[l]) * (r+1);
} 


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/puluter/article/details/52373399
个人分类: OI
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

树状数组原理及模板

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭