Linear Programming Learning Notes (1) Introduction
All the resources come from Linear Programming: Foundations and Extensions by Professor Robert J. Vanderbei.
Explore the link below for further information:
LP Book Resources
Part 1
Basic Theory: The Simplex Method and Duality
Chapter 1 Introduction
Examples
- Resource Allocation
- Blending Problem(Diet Problem)
- Shape Optimization(Telescope Design) (Not quite understood)
- FIR Filter Design(Not quite understood either)
Portfolio Optimization
-A Markowitz Type Problem
If we need to optimize two objectives, we could make a compromise to set a bound of one and maximize(minimize) another.
-Efficient Frontier
Varying risk bound μ produces the so-called ecient frontier.
Portfolios on the ecient frontier are reasonable.
Portfolios not on the ecient frontier can be strictly improved.Definitions
- Optimist and Pessimist
-Production manager as Optimist, to maximize the product quantity.
-Comptroller as Pessimist, to minimize the cost. - The Linear Programming Problem
-Decision Variables:
xj,j=1,2,3,...,n
-Objective Function:
ζ=c1x1+c2x2+…+cnxn
In real-world problems are most naturally formulated as minimizations(since real-world planners always seem to be pessimists), but when discussint mathematics it is usually nicer to work with maximization problems.
-Constraints:
a1x1+a2x2+...+anxn=⎧⎩⎨⎪⎪≤=≥⎫⎭⎬⎪⎪b.
-Mathematically preferred presentation:
maximize CTX
subject to AX≤B,X≥0
where C∈IRn,X∈IRn,A∈IRm×n,B∈IRm
m constraints, n variables
-Infeasible problems
-Unbounded: Feasible solutions with arbitrarily large objective values.