异常检测Anomaly Detection(一)定义、分类及方法

本文介绍了异常检测的概念、应用场景及难点,详细阐述了异常检测的分类方法,并综述了包括统计学方法、谱方法、基于距离的方法在内的多种异常检测技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 什么是异常检测?

1.1 定义

Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior. 1
异常检测,即寻找不符合预期行为的数据模式。

1.2 应用场景

某些数据的异常表现可能蕴含重要信息。
例如,在金融风控场景中,脱离正常的行为模式可能意味着信用卡盗刷、骗保;
医疗影像如CT、MRI中,异常图像可能意味着肿瘤等疾病;
计算机网络安全领域中,检测是否有违反安全策略的入侵等。

1.3 异常检测为什么难做

  1. 正常和异常之间的界限不清晰。在靠近边界处,正常观测常被错分类为异常观测,而异常观测又容易被分类为正常的。

  2. 异常行为难以辨识。异常行为通常遭人“粉饰”,使之看起来正常。

  3. 异常行为多变导致处置方式需要及时调整。例如双十一网店的销量很大可能是正常的,但平日里突然销量暴增可能是人为刷单,需要及时调整策略。

  4. 不同场景下的异常定义不同。例如,医学领域的微小偏差(如体温波动)可能是异常,而在股市领域的类似偏差(如股票价值波动)可能被视为正常;

  5. 数据缺乏标签,很多场景下没有异常数据的标签,无法使用监督学习;即使使用人工打标创建标签,通常情况下负样本(异常样本)是极少的,属于样本不平衡问题。

  6. 异常和噪音有时候很难分清

2. 异常检测的分类

2.1 根据数据集性质分类

  • 统计型数据 static data(文本、网络流)
  • 序列型数据 sequential data(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值