量子傅里叶变换2
我们记 ∣ j ⟩ |j\rangle ∣j⟩为 ∣ j 1 j 2 ⋯ j n ⟩ |j_1j_2\cdots j_n\rangle ∣j1j2⋯jn⟩,理解为 j = j 1 2 n − 1 + j 2 2 n − 2 + ⋯ + j n 2 0 j = j_12^{n-1}+j_22^{n-2}+\cdots+j^n2^0 j=j12n−1+j22n−2+⋯+jn20。
同理,我们有 0. j l j l + 1 ⋯ j m → j l 1 2 + j l + 1 1 2 2 + ⋯ + j m 1 2 m − l + 1 0.j_lj_{l+1}\cdots j_m \rightarrow j_l\frac{1}{2}+j_{l+1}\frac{1}{2^2}+\cdots+j_{m}\frac{1}{2^{m-l+1}} 0.jljl+1⋯jm→jl21+jl+1221+⋯+jm2m−l+11。
经过离散傅里叶变换,我们有:
∣ j ⟩ → ( ∣ 0 ⟩ + e 2 π i 0. j n ∣ 1 ⟩ ) ( ∣ 0 ⟩ + e 2 π i 0. j n − 1 j n ) ⋯ ( ∣ 0 ⟩ + e 2 π i 0. j 1 . . . j n ∣ 1 ⟩ ) 2 n / 2 |j\rangle\rightarrow\frac{(|0\rangle+e^{2\pi i0.j_n|1\rangle})(|0\rangle+e^{2\pi i0.j_{n-1}j_n})\cdots(|0\rangle+e^{2\pi i 0.j_1...j_n}|1\rangle)}{2^{n/2}} ∣j⟩→2n/2(∣0⟩+e2πi0.jn∣1⟩)(∣0⟩+e2πi0.jn−1jn