量子傅里叶变换2

本文详细介绍了量子傅里叶变换的概念,通过数学推导展示了量子态如何通过离散傅里叶变换转换,并提供了严谨的证明过程,揭示了量子计算中的这一关键步骤。
摘要由CSDN通过智能技术生成

量子傅里叶变换2

我们记 ∣ j ⟩ |j\rangle j ∣ j 1 j 2 ⋯ j n ⟩ |j_1j_2\cdots j_n\rangle j1j2jn,理解为 j = j 1 2 n − 1 + j 2 2 n − 2 + ⋯ + j n 2 0 j = j_12^{n-1}+j_22^{n-2}+\cdots+j^n2^0 j=j12n1+j22n2++jn20

同理,我们有 0. j l j l + 1 ⋯ j m → j l 1 2 + j l + 1 1 2 2 + ⋯ + j m 1 2 m − l + 1 0.j_lj_{l+1}\cdots j_m \rightarrow j_l\frac{1}{2}+j_{l+1}\frac{1}{2^2}+\cdots+j_{m}\frac{1}{2^{m-l+1}} 0.jljl+1jmjl21+jl+1221++jm2ml+11

经过离散傅里叶变换,我们有:
∣ j ⟩ → ( ∣ 0 ⟩ + e 2 π i 0. j n ∣ 1 ⟩ ) ( ∣ 0 ⟩ + e 2 π i 0. j n − 1 j n ) ⋯ ( ∣ 0 ⟩ + e 2 π i 0. j 1 . . . j n ∣ 1 ⟩ ) 2 n / 2 |j\rangle\rightarrow\frac{(|0\rangle+e^{2\pi i0.j_n|1\rangle})(|0\rangle+e^{2\pi i0.j_{n-1}j_n})\cdots(|0\rangle+e^{2\pi i 0.j_1...j_n}|1\rangle)}{2^{n/2}} j2n/2(∣0+e2πi0.jn∣1)(∣0+e2πi0.jn1jn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值