量子傅里叶变换电路实现

本文详细介绍了量子傅里叶变换电路的实现过程,通过分析Rk门和H门的作用,逐步展示量子比特如何通过一系列操作转化为量子傅里叶变换后的状态。量子计算机在执行离散傅里叶变换时,相较于传统计算机展现出指数级的加速优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量子傅里叶变换电路实现

注意这里的 R k R_k Rk门是单比特门
R = [ 1 0 0 e 2 π i / 2 k ] R = \begin{bmatrix} 1&0\\ 0&e^{2\pi i/2^k} \end{bmatrix} R=[100e2πi/2k]
我们注意到一个量子 ∣ j 1 j 2 . . . j n ⟩ |j_1j_2...j_n\rangle j1j2...jn经过量子傅里叶变换后变为
∣ j 1 j 2 . . . j n ⟩ ⟶ Q F T ( ∣ 0 ⟩ + e 2 π i 0. j n ∣ 1 ⟩ ) ( ∣ 0 ⟩ + e 2 π i 0. j n − 1 j n ∣ 1 ⟩ ) . . . ( ∣ 0 ⟩ + e 2 π i 0. j 1 j 2 . . . j n ∣ 1 ⟩ ) 2 n / 2 |j_1j_2...j_n\rang\stackrel{QFT}{\longrightarrow}\frac{(|0\rang+e^{2\pi i0.j_n}|1\rang)(|0\rang+e^{2\pi i0.j_{n-1}j_n{}}|1\rang)...(|0\rang+e^{2\pi i0.j_1j_2...j_n}|1\rang)}{2^{n/2}} j1j2...jnQFT2n/2(∣0+e2πi0.jn∣1⟩)(∣0+e2πi0.jn1jn∣1⟩)...(∣0+e2πi0.j1j2...j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值