leetcode 72.编辑距离(python)

leetcode 72.编辑距离(python)

给你两个单词 word1word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

递归 (超时了)

class Solution(object):
    def minDistance(self, word1, word2):
        # 递归
        if len(word1) == 0 or len(word2) == 0:
        	return max(len(word1), len(word2))
        n1 = len(word1)
        n2 = len(word2)
        if word1[-1] == word2[-1]:
        	return self.minDistance(word1[0:n1-1], word2[0:n2-1])
        return 1 + min(
        	self.minDistance(word1, word2[0:n2-1]),
        	self.minDistance(word1[0:n1-1], word2),
        	self.minDistance(word1[0:n1-1], word2[0:n2-1])
        )

动态规划

状态转移方程:

op[i][j] = 1 + min(op[i][j-1], op[i-1][j], op[i-1][j-1])
class Solution(object):
    def minDistance(self, word1, word2):
        # 动态规划
        len1, len2 = len(word1)+1, len(word2)+1
        dp = [[0 for _ in range(len2)] for _ in range(len1)]
        for i in range(len1):
        	dp[i][0] = i
        for j in range(len2):
        	dp[0][j] = j
        for i in range(1, len1):
        	for j in range(1, len2):
        		if word1[i-1] == word2[j-1]:
        			dp[i][j] = dp[i-1][j-1]
        		else:
        			dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
        return dp[-1][-1]
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页