Python+WordCloud绘制京东评论词云图实践

WordCloud绘制词云图实践案例

作为文本分析,其中常用库jieba、wordcloud等用法演示,以作记录~~

import os
import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import jieba
import jieba.analyse
import wordcloud
from PIL import Image

# 显示中文字体
font_path = '/Library/Fonts/Songti.ttc'

# 设置显示中文所需字体
plt.rcParams['font.family'] = 'Songti SC'
# 设置负号的正常显示
plt.rcParams['axes.unicode_minus'] = False

%matplotlib inline

# 设置清晰度
%config InlineBackend.figure_format = 'retina'

1、数据导入

  • 数据集,可从这里下载
# 采集的某品牌商品的最新100条评论
comment_pd = pd.read_excel('.././datas/JD-Comments.xlsx')
comment_pd.info()
# 转换成文本内容
comment_content = ' '.join(comment_pd.comment.to_list())

2、分词处理

jieba, “结巴”中文分词,最好的Python中文分词组件

# 设置停用词库
jieba.analyse.set_stop_words('.././datas/stop_words.txt')
# 基于TextRanks算法关键词提取
comment_words = jieba.analyse.textrank(comment_content, topK=300, withWeight=True)
# 基于TF-IDF算法的关键词提取
comment_words2 = jieba.analyse.extract_tags(comment_content, topK=300, withWeight=True)
# 仅使用关键词,忽略词频
word_list = []
for item in comment_words:
    word_list.append(item[0])
words = ' '.join(word_list)
# 列表数据转换为Dict
frequency_words = {}
for item in comment_words2:
    frequency_words[item[0]] = item[1]

3、展示案例

3.1 默认参数
# 默认参数,最简单例子
wc = wordcloud.WordCloud(font_path=font_path)
wc.generate(words)

# 绘图展示
plt.figure(figsize=(12, 9))
plt.imshow(wc, interpolation='bilinear')
# 关闭XY轴
plt.axis('off')
plt.show()

在这里插入图片描述

3.2 设置字体大小
# 默认参数,最简单例子
wc = wordcloud.WordCloud(font_path=font_path, max_font_size=50)
wc.generate(words)

# 绘图展示
plt.figure(figsize=(12, 9))
plt.imshow(wc, interpolation='bilinear')
# 关闭XY轴
plt.axis('off')
plt.show()

在这里插入图片描述

3.3 设置图形形状蒙板
  • 选择一个图片,取得图片元素形状
  • 设置contour_width、contour_color图形轮廓宽度及颜色
# 选择一个图片
mask = np.array(Image.open('.././datas/china-map.jpeg'))
wc = wordcloud.WordCloud(font_path=font_path, background_color='white', max_font_size=50, mask=mask,
                         contour_width=1, contour_color='grey')
wc.generate(words)

# 绘图展示
plt.figure(figsize=(12, 9))
plt.imshow(wc, interpolation='bilinear')
# 关闭XY轴
plt.axis('off')
plt.show()

在这里插入图片描述

3.4 使用带词频数据展示
  • 方法:generate_from_frequencies
wc = wordcloud.WordCloud(font_path=font_path, background_color='white', max_font_size=100, mask=mask,
                         contour_width=1, contour_color='grey')
wc.generate_from_frequencies(frequency_words)

# 绘图展示
plt.figure(figsize=(12, 9))
plt.imshow(wc, interpolation='bilinear')
# 关闭XY轴
plt.axis('off')
plt.show()

在这里插入图片描述

3.5 使用图形配色方案显示词云
  • WordCloud.ImageColorGenerator方法
  • wc.recolor方法
wc = wordcloud.WordCloud(font_path=font_path, background_color='white', max_font_size=100, mask=mask,
                         contour_width=1, contour_color='grey')
wc.generate_from_frequencies(frequency_words)

# 从图像创建颜色
image_colors = wordcloud.ImageColorGenerator(mask)

# 绘图展示
plt.figure(figsize=(12, 9))
plt.imshow(wc.recolor(color_func=image_colors), interpolation='bilinear')
# 关闭XY轴
plt.axis('off')
plt.show()

在这里插入图片描述

3.6 使用自定义颜色展示
def grey_color_func(word, font_size, position, orientation, random_state=None, **kwargs):
    return "hsl(0, 0%%, %d%%)" % random.randint(60, 100)
wc = wordcloud.WordCloud(font_path=font_path, background_color='white', max_words=100, max_font_size=100, 
                         mask=mask, contour_width=1, contour_color='grey')
wc.generate_from_frequencies(frequency_words)

# 默认颜色
default_colors = wc.to_array()

# 绘图展示
plt.figure(figsize=(12, 9))
plt.imshow(wc.recolor(color_func=grey_color_func, random_state=3), interpolation='bilinear')
# 关闭XY轴
plt.axis('off')

# 默认图
plt.figure(figsize=(12, 9))
plt.imshow(default_colors, interpolation='bilinear')
# 关闭XY轴
plt.axis('off')
plt.show()

在这里插入图片描述

好的,我可以为您讲解如何使用Pythonwordcloud和jieba制作中文词云图。 首先,您需要安装以下库:wordcloud、jieba 和 matplotlib。您可以使用以下命令进行安装: ``` pip install wordcloud pip install jieba pip install matplotlib ``` 接着,您需要准备一段中文文本。您可以从网络上下载一些中文文章,或者自己写一些中文文本。 然后,您可以使用jieba库将中文文本进行分词。jieba库提供了一个基于前缀词典实现的中文分词器,可以将中文文本分成一个个词语。下面是一个使用jieba库进行中文分词的示例代码: ```python import jieba # 设置停用词文件路径 jieba.analyse.set_stop_words("stopwords.txt") # 读取文本文件 with open("text.txt", "r", encoding="utf-8") as f: text = f.read() # 对文本进行分词 words = jieba.cut(text) # 输出分词结果 print(",".join(words)) ``` 在上面的代码中,我们使用了一个停用词文件来过滤掉一些无意义的词语。您可以自己准备一个停用词文件,也可以使用别人已经准备好的停用词文件。 接下来,您可以使用wordcloud库生成词云图wordcloud库提供了一个WordCloud类,可以根据词语频率生成词云图。下面是一个使用wordcloud库生成词云图的示例代码: ```python import jieba from wordcloud import WordCloud import matplotlib.pyplot as plt # 设置停用词文件路径 jieba.analyse.set_stop_words("stopwords.txt") # 读取文本文件 with open("text.txt", "r", encoding="utf-8") as f: text = f.read() # 对文本进行分词 words = jieba.cut(text) # 生成词语频率字典 word_freq = {} for word in words: if word not in word_freq: word_freq[word] = 0 word_freq[word] += 1 # 生成词云图 wc = WordCloud(font_path="simhei.ttf", background_color="white") wc.generate_from_frequencies(word_freq) # 显示词云图 plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.show() ``` 在上面的代码中,我们使用了一个字体文件来设置词云图的字体。您可以自己选择一个中文字体文件,也可以使用别人已经准备好的字体文件。 最后,您可以使用matplotlib库将词云图显示出来。使用plt.imshow()函数可以显示图像,使用plt.axis("off")函数可以去掉坐标轴,使用plt.show()函数可以显示图像。 希望以上内容能够帮助到您制作中文词云图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值