- 博客(9)
- 收藏
- 关注
原创 机器学习实验报告(六)
根据因变量为二分类或多分类,logistic回归可相应的分为二分类logistic回归和多分类 logistic回归。因变量为二分类变量时,根据设计类型的不同,可分别采用非条件logistic回归或条件logistic回归模型进行分析。在流行病学研究中,虽然可以用Mantel-Haenszel分层分析方法分析多个因素的混杂作用,但这种经典方法有其局限性,随着混杂因素的增加,分层越来越细,致使每层内的数据越来越少,使相对危险度的估计产生困难。因此,变量赋值合理与否,直接影响着logistic回归的效果。
2023-12-18 20:12:13 991 1
原创 机器学习实验报告(七)
SVMSVM 是一个非常优雅的算法,具有完善的数学理论,虽然如今工业界用到的不多,但还是决定花点时间去写篇文章整理一下。
2023-12-18 19:59:17 1277 1
原创 机器学习实验报告五
朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
2023-11-19 21:37:37 97
原创 机器学习实验报告(四)
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
2023-11-06 22:48:23 998
原创 机器学习实验报告(三)
① 综合各类别的准确度:准确率accuracy对于分类错误情况的描述是比较直接的,但是对于正负例不平衡的情况下,accuracy评价基本没有参考价值,比如 欺诈用户识别的分类场景,有950个正常用户样本(负例),50个异常用户(正例),模型把样本都预测为正常用户样本,准确率是非常好的达到95%。但实际上是分类效果很差。③ 跨任务的量纲差异问题:实际运用中,像RMSE、MAE是有个问题的,不同任务的量纲是会变的,比如我们预测股价误差是10元,预测房价误差是1w,跨越了不同任务我们就没法评估哪个模型效果更好。
2023-10-23 00:40:44 874 1
原创 机器学习实验报告(二)
KNN算法的核心思想是,如果一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。该方法的思路非常简单直观:如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。的原则,将测试样本点归入在K个点中占比最高的那一类 [3]
2023-10-09 13:35:34 518 1
原创 机器学习实验报告(一)
首先,让我们了解一下Anaconda。在下一步中,你需要选择“Add Anaconda to the system PATH”。如果你不添加环境变量,你需要在命令行中输入完整的路径来调用Anaconda。在下一步中,你可以选择更改安装路径。默认情况下,Anaconda会安装到C盘,但是为了不占用C盘空间,我们建议更改安装路径到D盘或者其他磁盘分区。在安装开始时,你需要选择安装类型。个人用户通常选择“Just Me”选项,这样不会为所有用户安装Anaconda。安装完成后,点击“Finish”结束安装过程。
2023-09-25 19:46:18 397
原创 Visual Studio Code(VS Code)安装教程
VS Code,一款由微软开发的免费源代码编辑器,因其轻量级、高效、开源的特点,越来越受到开发者的欢迎。下面我们将详细介绍如何安装和使用 VS Code。以上就是关于 VS Code 的安装和使用教程。希望这个教程可以帮助你更好地使用 VS Code,提高你的编程效率!三、使用 VS Code 进行编程。一、下载和安装 VS Code。二、配置 VS Code。
2023-09-25 19:27:14 457
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人