前提知识
正样本,负样本:检测是否戴口罩,则戴口罩为正样本,不戴口罩为负样本。
正样本量:负样本量=1:3
正样本图片的像素:建议2020,训练精度更高
负样本图片的像素:建议8080(须>50*50,加快训练速度)
描述文件txt:每张图片的绝对路径 图中几个目标 图片左坐标 图片上坐标 图片宽度 图片高度
E:/img/have_mask/1001.jpg 1 0 0 20 20
vec文件:是将可视的图片转化为矩阵存储
训练时:
一般训练到损失为0.0004就可以,继续训练可能过拟合。要合理选择stage
N训练层数,HR 命中率;FA 警告,只有当每一层训练的FA < maxfalsealarm数值才会进入下一层训练
安装opencv 3.4.1

涉及的分类器
Haar
Harr特征分类器,XML文件,该文件中会描述人体各个部位的Haar特征值。包括人脸、眼睛、嘴唇等等。
如:haarcascade_frontalface_default.xml 人脸检测
face_detector= cv2.CascadeClassifier(r'E:\location\anaconda\pkgs\libopencv-3.4.1-h875b8b8_3\Library\etc\haarcascades\haarcascade_frontalface_default.xml')
detectMultiScale函数
它可以检测出图片中所有的人脸,并将人脸用vector保存各个人脸的坐标、大小(用矩形表示),函数由分类器对象调用:
faces=face_detector.detectMultiScale(gray, 1.1, 3)
void detectMultiScale(
const Mat& image,
CV_OUT vector<Rect>& objects,
double scaleFactor = 1.1,
int minNeighbors = 3,
int flags = 0,
Size minSize = Size(),
Size maxSize = Size()
);
参数1:img 一般为灰度图像,加快检测速度;
参数3:scaleFactor--表示在前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%;
参数4:minNeighbors--表示构成检测目标的相邻矩形的最小个数(默认为3个)。

本文介绍了如何在Anaconda环境下利用opencv 3.4.1训练Haar分类器,包括正负样本比例、像素要求、训练参数等关键步骤。详细讨论了detectMultiScale函数、opencv_createsamples.exe和opencv_traincascade.exe的使用,以及训练过程中可能遇到的问题和解决方案。
最低0.47元/天 解锁文章
281

被折叠的 条评论
为什么被折叠?



