resize、重采样、降采样、上采样、下采样

本文介绍了图像处理中的resize操作,包括保持与不保持长宽比的图像缩放,以及重采样(上采样)和降采样(下采样)方法。内容涉及内插值在放大图像中的应用,以及pooling在缩小图像时的作用。此外,还讨论了数据不均衡问题,提出欠采样和过采样的解决方案,如SMOTE生成新样本以平衡类别分布。
摘要由CSDN通过智能技术生成

图像变大、变小:resize

改变长宽比

不改变长宽比

变大:重采样/上采样【内插值方法】

在这里插入图片描述

变小:降采样/下采样【pooling:maxPooling, averagePooling】

在这里插入图片描述

原因

图片过大容易导致模型过大,消耗更多的显存,计算速度慢

使用场景

分类时,如判断一张图片是否是风景,图片大小并不影响特征的提取,如山脉、树木的提取,图变小,照样有。

对于特定的任务,如医疗图像,病灶的识别,是对图片的精确度有依赖的,缩小图片是会有精度损失的,此时应使用crop/切图。

数据不均衡:有的类别多,有的少

重采样

欠采样/下采样:减少大样本类别的数量,抽取

从Smaj 随机舍弃,可能损失有用信息

过采样(上采样):增加小样本类别的数量

从Smin 中重复或有放回采样,可能造成过拟合

生成新样本,SMOTE方式:
对于少数类样本 a, 随机选择一个最近邻的样本 b, 然后从 a 与 b 的连线上随机选取一个点 c 作为新的少数类样本

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值