在回答这个问题之前,首先思考另一个问题:为什么是模3的余数,而不是2或5?
那是因为3很特殊,求一个数模3的余数时,有一种巧妙地解法。
算法
算法是将这个数的各位数字加起来,重复这一过程,直到最后得到一位数,这一位数模3的结果就是最终答案。

比如求17%3,1+7=8,8%3=2,于是17%3=2。
参考代码:
func mod3(num int) int {
sum := num
for sum/10 != 0 {
tmp := sum
sum = 0
for tmp != 0 {
sum += tmp % 10
tmp /= 10
}
}
return sum % 3
}
无论是正数还是负数都可以用这个方法求解。
原理
原理和数的进制有关,其实特殊的并不是3,而是数字9。
对于任意一个数n,可以写成a×10+b
的形式,同时也可以写成3×n+m
的形式。于是:
a × 10 + b = n × 3 + m a × ( 9 + 1 ) + b = n × 3 + m a × 9 + ( a + b ) = n × 3 + m a + b = k × 3 + m a\times10+b=n\times3+m\\ a\times(9+1)+b=n\times3+m\\ a\times9+(a+b)=n\times3+m\\ a+b=k\times3+m a×10+b=n×3+ma×(9+1)+b=n×3+ma×9+(a+b)=n×3+ma+b=k×3+m
因此n
和它各个位上数字之和模3具有相同的余数。这其中起关键作用的正是9,因为3是9的约数,因此可以享受这份神奇。
推广开来,只要是9的约数或倍数,其实都可以用这个算法来求余数。但是需要注意,大于9的数字的余数可能会大于10。因此不能加到只剩一位了再取余,而是加到大于该数的最小数字结束。
比如求28模18的余数,由于2+8=10<18
,因此不能把2和8加起来,应该直接取余。
在10进制下,9是最大的一位数,因此具有了这种魔力。继续推广,在m进制中,m-1也具有相同的魔力。比如8进制下,7的约数及倍数也可以用这个算法求余数,16进制下,15的约束和倍数可以用这个算法求余数。当然前提是数字要转换成相应的进制进行计算,因为这是一个和进制有关的游戏。