求任意整数模3的余数

在回答这个问题之前,首先思考另一个问题:为什么是模3的余数,而不是2或5?

那是因为3很特殊,求一个数模3的余数时,有一种巧妙地解法。

算法

算法是将这个数的各位数字加起来,重复这一过程,直到最后得到一位数,这一位数模3的结果就是最终答案。

比如求17%3,1+7=8,8%3=2,于是17%3=2。

参考代码:

func mod3(num int) int {
	sum := num
	for sum/10 != 0 {
		tmp := sum
		sum = 0
		for tmp != 0 {
			sum += tmp % 10
			tmp /= 10
		}
	}
	return sum % 3
}

无论是正数还是负数都可以用这个方法求解。

原理

原理和数的进制有关,其实特殊的并不是3,而是数字9。

对于任意一个数n,可以写成a×10+b的形式,同时也可以写成3×n+m的形式。于是:

a × 10 + b = n × 3 + m a × ( 9 + 1 ) + b = n × 3 + m a × 9 + ( a + b ) = n × 3 + m a + b = k × 3 + m a\times10+b=n\times3+m\\ a\times(9+1)+b=n\times3+m\\ a\times9+(a+b)=n\times3+m\\ a+b=k\times3+m a×10+b=n×3+ma×(9+1)+b=n×3+ma×9+(a+b)=n×3+ma+b=k×3+m

因此n和它各个位上数字之和模3具有相同的余数。这其中起关键作用的正是9,因为3是9的约数,因此可以享受这份神奇。

推广开来,只要是9的约数或倍数,其实都可以用这个算法来求余数。但是需要注意,大于9的数字的余数可能会大于10。因此不能加到只剩一位了再取余,而是加到大于该数的最小数字结束。

比如求28模18的余数,由于2+8=10<18,因此不能把2和8加起来,应该直接取余。

在10进制下,9是最大的一位数,因此具有了这种魔力。继续推广,在m进制中,m-1也具有相同的魔力。比如8进制下,7的约数及倍数也可以用这个算法求余数,16进制下,15的约束和倍数可以用这个算法求余数。当然前提是数字要转换成相应的进制进行计算,因为这是一个和进制有关的游戏。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值