OmniParser: 让大模型化身“电脑管家”

GitHubhttps://github.com/microsoft/OmniParser

更多AI开源软件发现分享好用的AI工具、AI开源软件、AI模型、AI变现 - 小众AI

微软发布了革命性的视觉Agent框架OmniParser V2。这个能把DeepSeek-R1、GPT-4o等大模型变成"计算机使用智能体"的黑科技,让AI终于不再只是"脑补"屏幕内容——它现在能像人类一样精准识别UI元素,甚至能发现你都没注意到的隐藏按钮!

OmniParser V2.0代表了AI视觉解析技术的重大进步,它不仅促进了用户与数字界面之间的更好互动,还在各类应用中增强了自动化能力。

OmniParser V2.0有广泛的应用场景:

  • UI自动化:通过让AI代理与GUI互动来自动化重复任务。
  • 辅助技术解决方案:为残障用户提供结构化数据,帮助辅助技术的实现。
  • 用户界面分析:根据从截图中提取的数据分析UI设计,提升可用性。

主要功能

  • 速度与效率:与其前版本相比,OmniParser V2.0显著减少了约60%的处理延迟,在高端GPU(如A100)上的平均处理时间为0.6秒,在4090型号上为0.8秒。
  • 增强的准确性:该工具在检测交互元素方面的平均准确率为39.6%,相比早期版本有了显著提升。这一准确率通过使用精细调优的YOLOv8模型和扩展的训练数据集(涵盖各种UI组件)得以实现。
  • 强大的输入/输出能力:OmniParser支持来自多个平台的截图,包括Windows和移动设备。它能够生成UI元素的结构化表示,详细描述可点击区域及其功能。
  • 与LLM的无缝集成:该工具通过统一接口OmniTool与多个AI模型集成,如OpenAI的GPT-4o、DeepSeek R1、Qwen 2.5VL和Anthropic Sonnet。这种集成使得创建自动化测试工具和辅助技术解决方案成为可能。

安装和使用

安装OmniParser
pip install omniparser-v2 --prefer-binary

如果pip安装不上,也可以单独访问模型地址使用:https://huggingface.co/microsoft/OmniParser-v2.0

注意:如果卡在Building wheel for...​,请泡杯咖啡等待(建议选择云南小粒咖啡,据说能提升编译速度)

下载权重文件和模型
rm -rf weights/icon_detect weights/icon_caption weights/icon_caption_florence 
huggingface-cli download microsoft/OmniParser-v2.0 --local-dir weights
mv weights/icon_caption weights/icon_caption_florence

温馨提示:如果下载速度堪比树懒,可以试试把DNS改成114.114.114.114(亲测能快0.5倍)

OCR支持配置
# 安装Tesseract OCR(Windows特供版)
choco install tesseract --params '"/AdditionalLanguages:chi_sim"'

安装完成后记得测试:

tesseract --version
# 应该看到:tesseract 5.3.3... with chi_sim

常见翻车现场:如果报错Error opening data file...​,请检查是否安装了中文语言包(就像吃火锅不点毛肚,OCR没中文包就失去灵魂)

实战演练

场景1:解析PDF文件
from omniparser import OmniParser, PdfParser

agent = OmniParser()
result = agent.parse_file("年度亏损报告.pdf", parser_type=PdfParser)
print(result[:500]) # 只打印前500字,防止老板突然出现

效果:AI不仅能提取文字,还能自动识别"财务报表.jpg"里的手写批注(老板的狗爬字有救了!)

场景2:截图转Excel
from omniparser import ImageParser, ExcelWriter

data = agent.parse_file("网页数据截图.png", 
                      parser_type=ImageParser,
                      lang="chi_sim+eng")
ExcelWriter().save(data, "export.xlsx")

黑科技:自动识别表格线,连合并单元格都能还原(再也不用跪求前端导出数据了!)

场景3:让AI操作你的电脑
# 创建自动化智能体
from omniparser import ActionPlanner

planner = ActionPlanner(model="gpt-4o")
action_sequence = planner.generate_actions("把C盘所有.mp4文件移动到D:\电影")

# 执行操作
for action in action_sequence:
    agent.execute_action(action)

警告:执行前请三思!曾有程序员让AI清理桌面,结果连"此电脑"图标都被删了...

DeepSeek 与 OmniParser 2.0 的结合使用

可以实现结构化数据解析与AI能力增强的协同工作。以下是具体结合方式及典型应用场景的详细说明:

场景1:非结构化文档智能处理

流程:

  1. OmniParser 解析
# 示例:解析复杂PDF合同
from omniparser import DocumentParser
doc = DocumentParser("contract.pdf")
clauses = doc.extract_sections(schema={"parties": "甲方:(.*?)\n乙方:(.*?)\n"})
  1. DeepSeek 语义分析
from deepseek import LegalAnalyzer
risk_report = LegalAnalyzer.generate_risk_assessment(
    text=clauses["payment_terms"],
    prompt="识别付款条款中的法律风险点,用Markdown表格输出"
)

输出结果示例:

风险点条款原文建议修正方案
违约金比例过高"逾期付款需支付日0.5%违约金"建议调整为日0.05%(司法保护上限)

场景2:日志文件异常检测

流程:

  1. OmniParser 结构化日志
# 使用CLI工具处理服务器日志
omniparser-cli --input server.log --template nginx_error --output errors.json
  1. DeepSeek 模式识别
from deepseek import AnomalyDetector
detector = AnomalyDetector(model="it_ops_v2")
alerts = detector.analyze_logs(
    input_path="errors.json",
    rules={"高频500错误": "status=500 count>10/分钟"}
)

智能预警输出:

{
  "alert_id": "HTTP_500_CRITICAL",
  "timestamp": "2024-03-15T14:23:18Z",
  "metric": "status_code=500",
  "current_rate": "15次/分钟",
  "suggested_action": "立即检查/user-api服务数据库连接池配置"
}
<think>好的,我现在需要回答用户关于如何将DeepSeek与OmniParser V2结合使用的问题。首先,我要查看用户提供的引用内容,找出相关的信息。引用1提到了使用OmniParser解析PDF合同,并通过DeepSeek进行语义分析。引用2提到OmniTool包含OmniParser和各种LLM,包括DeepSeek R1。引用3和4则涉及安装和使用教程。 接下来,我需要整理步骤:安装环境、初始化解析器、解析文档、调用DeepSeek分析、处理结果。确保每一步都有对应的代码示例,并且引用正确的来源。例如,安装部分参考引用4,代码结构参考引用1。同时,要注意用户提到的示例代码,可能需要结合引用1中的例子来展示完整的流程。 还要注意用户可能关心的集成细节,比如如何传递解析后的数据到DeepSeek,是否需要特定的API密钥或环境配置。引用2提到OmniParser支持多种LLM,所以可能需要说明如何配置DeepSeek的模型参数。最后,生成相关问题时要覆盖安装、功能扩展、应用场景和优势等方面,帮助用户进一步探索。</think>以下是如何将DeepSeek与OmniParser V2结合使用的分步指南: ### 一、环境准备 1. 使用conda创建虚拟环境(参考引用[4]) ```bash conda create -n "omni" python==3.12 conda activate omni pip install -r requirements.txt ``` 2. 安装核心组件 ```python # OmniParser核心库 from omniparser import DocumentParser # DeepSeek集成模块 from deepseek.integration import OmniConnector ``` ### 二、基础集成流程 ```python # 初始化文档解析器(引用[1]示例扩展) doc = DocumentParser("contract.pdf", engine=OmniConnector(api_key="your_deepseek_key")) # 结构化解析文档内容 clauses = doc.extract_sections( schema={ "parties": "甲方:(.*?)\n乙方:(.*?)\n", "payment_terms": "(付款方式|支付条款).*?(?=第[一二三四五六七八九十]章)" } ) # 调用DeepSeek进行语义分析(引用[1][2]综合示例) risk_analysis = OmniConnector.legal_analyze( text=clauses["payment_terms"], prompt=""" 执行以下操作: 1. 识别潜在法律风险点 2. 评估风险等级(高/中/低) 3. 用Markdown表格输出结果 """ ) ``` ### 三、高级功能集成 ```python # 多模态处理示例(引用[2]屏幕理解能力) screen_analysis = OmniConnector.screen_parse( screenshot="ui_screenshot.png", prompt="识别界面中的表单字段和交互元素" ) # 自动化执行流程(引用[2]执行步骤集成) execution_flow = OmniConnector.generate_workflow( goal="自动填写并提交采购订单", steps={ "screen_analysis": screen_analysis, "document_data": clauses } ) ``` ### 四、结果处理 ```python # 输出格式化报告(引用[1]表格输出示例) print(f"## 法律风险分析报告\n{risk_analysis['table']}") # 保存结构化数据 with open("contract_analysis.json", "w") as f: json.dump({ "metadata": doc.metadata, "clauses": clauses, "risks": risk_analysis }, f, ensure_ascii=False) ``` [^1]: DeepSeek结合OmniParser V2 使用全攻略:让大模型化身"电脑管家"的正确姿势 [^2]: OmniTool包含的代理设置和LLM集成方案 [^4]: OmniParser V2 安装环境配置说明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值