分位数回归简介(QR笔记)

Type Book
Title Quantile Regression
Author(s) Roger Koenker
Year 2005
Series Econometric Society Monographs (38)
Level Monograph
Citation 9393
Chapter(s) C1

本文是Koenker (2005) 第1章的笔记,QR是指分位数回归,本书是分位数回归中最经典的著作(没有之一)。本章主要用例子讲解什么是QR,以及QR的优势。

背景考古

线性回归为什么流行?

  • 计算方便;
  • 误差正态时性质较好;
  • 提供了对条件期望函数的一种一般的近似方法。

但在均值之外,还有许多可以研究的东西,QR就可以更全面地描述整个分布。

原书举了一个Boscovich对地球的扁率(flattening或ellipticity)估计的例子进行考古。问题的背景是,要根据纬度 x x x和弧长 y y y,估计出 y = a + b sin ⁡ 2 x y=a+b\sin^2 x y=a+bsin2x中的 a a a b b b,这里 a a a是赤道上一段弧长的长度, b b b是极地一段弧长的长度比赤道长了多少,然后就可以计算扁率,公式为 b / ( 3 a ) b/(3a) b/(3a)。采集了5个不同地点的 ( x , y ) (x,y) (x,y)数据之后,利用任意两个数据点,都可以得到 ( a , b ) (a,b) (a,b)的一个估计,因此一共会有 10 10 10个估计,画在下图中。

可以看到有些估计不能让人满意。本质上,OLS估计量是这 10 10 10个用两个样本估计的结果的加权平均,对异常值也比较敏感。为了改进它,Boscovich提出了一种结合了均值和中位数的优点的方法,Boscovich的生卒年是1711–1787,而后面又有其他人对基于中位数方法的思想与改进,如Laplace (1789) 和Edgeworth (1988) 等,这就是分位数回归的思想萌芽。但基于中位数的方法在计算上始终是个麻烦,直到后来线性规划(LP)的出现。

分位数及其LP求解

分位数函数本质上是c.d.f的反函数,为了估计 τ \tau τ分位数,可以用check function ρ τ ( u ) = ( τ − 1 u < 0 ) u \rho_\tau(u)=(\tau - 1_{u<0})u ρτ(u)=(τ1u<0)u作为损失函数进行最小化求解,这是一个分段线性函数。求解最小化是指,变动 x x x,求 E ρ τ ( X − x ) E\rho_\tau(X-x) Eρτ(Xx)的最小值,假设 X X X是连续型随机变量,则 d E ρ τ ( X − x ) d x = F X ( x ) − τ \dfrac{d E\rho_\tau(X-x)}{dx}=F_X(x)-\tau dxdEρτ(Xx)=FX(x)τ,令其为 0 0 0,再由 F X ( ⋅ ) F_X(\cdot) FX()的单调递增性可知,最小化的解刚好就是 τ \tau τ分位数。在实际中,用e.d.f.替换c.d.f.就可解出样本分位数。

通过这个过程,我们将排序的问题,转化成了一个最优化问题,这种转化的思想可以将分位数推广到许多其他的模型,非常重要。

在求解样本分位数时,可以使用LP。想要最小化 ∑ i = 1 N ρ τ ( y i − q ) \sum_{i=1}^{N} \rho_\tau(y_i-q) i=1Nρτ(yiq),但它不是处处可微的,可以引入两个松弛变量 u i = ( y i − q ) ∨ 0 u_i = (y_i-q) \vee 0 ui=

  • 14
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Puyi93

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值