我们使用正写字母表示测度,以区别于普通的函数。由于数据科学的研究经常会涉及经验过程,在经验过程中,常见的经验测度会被表示为 P n \mathrm{P}_n Pn,这是一个在 ( R , B ( R ) ) (\mathbb{R},\cal{B}(\mathbb{R})) (R,B(R))上的测度,而经验过程常记为 P n − P \mathrm{P}_n-\mathrm{P} Pn−P,这很容易
概率测度的符号冲突
于 2024-05-28 23:05:21 首次发布
在数据科学中,概率测度的表示常引起混淆。Pn通常表示在(R,B(R))上的经验测度,而P表示(Ω,B(Ω))上的概率测度,两者定义域不同。为了区分,建议将(Ω,B(Ω))上的概率测度写作P,分布(即(R,B(R))上的测度)保持为Pn。期望算子相应写作E。尽管在某些文献中有不同记法,如van der Vaart and Wellner (2023)和Billingsley (1999)中对测度和概率测度的处理方式各有特点。"
137741474,7337247,多模态学习:融合视觉与语言的智能技术解析,"['深度学习', '神经网络', '大数据', '人工智能', '大型语言模型']
摘要由CSDN通过智能技术生成