威尔逊定理 学习笔记

本文的内容仅是个人理解,如有错误请私信纠正

Wilson 定理

内容

对于素数p都有: ( p − 1 ) ! ≡ − 1 ( m o d    p ) (p-1)!\equiv -1(\mod p) (p1)!1(modp)

证明

对于 p = 2 p=2 p=2:显然 1 ! = 1 ≡ − 1 ( m o d    2 ) 1!=1\equiv -1(\mod 2) 1!=11(mod2),成立
对于 p ≥ 3 p\ge3 p3
∵ \because p p p 以内与 p p p 互质的数有 p − 1 p-1 p1 个,除 1 1 1 p − 1 p-1 p1 外剩余的 p − 2 p-2 p2 个数均可两两配对,即有不同于自己对于 p p p 的逆元
∴ \therefore ( p − 1 ) ! ≡ 1 × ( p − 1 ) ≡ − 1 (p-1)!\equiv1\times(p-1)\equiv-1 (p1)!1×(p1)1

Legendre 公式

内容

n ! n! n! 中含有的素数 p p p 的幂次 v p ( n ! ) v_p(n!) vp(n!) 为: v p ( n ! ) = ∑ i = 1 ∞ ⌊ n p ! ⌋ v_p(n!)=\sum_{i=1}^{\infty}\lfloor\frac{n}{p!}\rfloor vp(n!)=i=1p!n
证明:显然

Wilson 定理的推广

内容

( p q ! ) p ≡ { 1 , ( p = 2 ) ⋀ ( q ≥ 3 ) − 1 , o t h e r w i s e (p^q!)_p\equiv \begin{cases}1,(p=2)\bigwedge(q\ge3)\\-1,otherwise \end{cases} (pq!)p{1,(p=2)(q3)1,otherwise

对于 p = 2 p=2 p=2

  • q = 1 q=1 q=1 显然 1 ! = 1 ≡ − 1 ( m o d    2 ) 1!=1\equiv -1(\mod 2) 1!=11(mod2),成立
  • q = 2 q=2 q=2 显然 1 ∗ 3 = 1 ≡ − 1 ( m o d    4 ) 1*3=1\equiv -1(\mod 4) 13=11(mod4),成立
  • q ≥ 3 q\ge3 q3时,易做到两两配对使得乘积为 − 1 -1 1 ,但组数有偶数个,导致乘起来后为 1 1 1

对于 p ≥ 3 p\ge3 p3
∵ \because p q p^q pq 以内与 p q p^q pq 互质的数有 ( p − 1 ) p q − 1 (p-1)p^{q-1} (p1)pq1 个,除 1 1 1 p q − 1 p^q-1 pq1 外剩余的 ( p − 1 ) p q − 1 − 2 (p-1)p^{q-1}-2 (p1)pq12 个数均可两两配对,即有不同于自己对于 p q p^q pq 的逆元,此外的 p q − 1 p^{q-1} pq1 个数与 p p p 不互质但会被排外。
∴ \therefore ( p q ! ) p ≡ − 1 (p^q!)_p\equiv-1 (pq!)p1
综上所述,定理成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值