win10开启蓝牙虚拟串口

一、一点说明

首先确保你的电脑是有蓝牙的硬件设备的,因为并不是所有的电脑都自带蓝牙功能。这一点可以在设备管理器中查看,比如:
这里写图片描述
如图可见博主的电脑是有蓝牙功能的。
只是默认情况下,笔记本的蓝牙都不开启虚拟蓝牙串口服务。

二、开启蓝牙

win10开启蓝牙的方式很多,可以从“设置”中选择“设备”如图:
这里写图片描述

然后单击进入,左侧选择”蓝牙”:
这里写图片描述

这样就可以通过蓝牙开关选项开启蓝牙了,效果如下:
这里写图片描述

还有一种方法直接从通知栏中单击蓝牙按钮打开蓝牙:
这里写图片描述

但是其他蓝牙功能还是要在刚才的设置界面才能设置,所以可以右键通知栏中的蓝牙按钮,选择跳转到设置界面:
这里写图片描述

三、添加蓝牙虚拟串口

在设置界面单击“更多蓝牙选项”:
这里写图片描述

单击后跳出一个新的窗口,然后选择“COM端口”选项卡,效果如下:
这里写图片描述

单击“添加”按钮弹出新的窗口,效果如下(传入与传出根据实际需求选择,这里我们选择传入,因为大多数情况下是设备启动连接):
这里写图片描述

单击确定后,我们发现在“COM端口”选项卡中多了一个端口(端口的中文名称可能不同):
这里写图片描述

到此,我们就开启了一个蓝牙虚拟串口,你还可以继续添加更多的虚拟串口。我们可以从设备管理器中来看看这些端口是不是存在:
这里写图片描述

如图可见蓝牙虚拟串口开启成功了,查看其属性可以配置需要的波特率等:
这里写图片描述

到此,虚拟蓝牙串口成功开启!

### 如何使用 LangChain 实现检索增强生成(RAG) 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了检索模型和生成模型的技术,旨在通过从外部数据源中提取相关信息来提高生成质量。以下是基于 LangChain 的 RAG 实现方法。 #### 使用 LangChain 构建 RAG 流程 LangChain 提供了一套工具链用于构建复杂的自然语言处理应用,其中包括 RAG 的实现。以下是一个完整的流程说明: 1. **定义文档格式化函数** 需要创建一个函数 `format_docs` 将检索到的文档转换为适合输入给大语言模型的形式。此过程通常涉及拼接多个文档的内容并保留其结构[^3]。 2. **设置检索器** 利用 LangChain 中的检索组件(如 VectorStoreRetriever),可以从存储的知识库中获取与查询最相关的上下文信息。这些信息作为额外的背景提供给后续的语言模型。 3. **组合运行流** 创建一个可执行的工作流对象 `rag_chain`,它串联了以下几个阶段: - 输入问题; - 调用检索器获得相关文档; - 对文档进行格式化; - 结合提示模板将问题和上下文传递至大型语言模型(LLM); - 解析 LLM 输出的结果。 下面展示了一个具体的代码实例: ```python from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough def format_docs(docs): """将检索到的文档列表转化为字符串形式""" return "\n\n".join(doc.page_content for doc in docs) # 定义工作流 rag_chain = ( { "context": retriever | format_docs, "question": RunnablePassthrough() } | prompt | llm | StrOutputParser() ) # 执行实时推理 for chunk in rag_chain.stream("What is Task Decomposition?"): print(chunk, end="", flush=True) ``` 上述脚本展示了如何逐步调用各个模块完成端到端的任务分解问答功能。 --- #### 关键概念解释 - **retriever**: 这里指代的是一个能够依据用户提问返回关联度较高的文档片段的对象。 - **prompt**: 表达清晰逻辑关系的引导语句设计模式,指导 AI 正确理解任务需求。 - **llm**: 大型预训练语言模型负责最终答案生成环节。 以上各要素共同协作构成了高效的 RAG 系统架构。 ---
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值