Adaboost入门教程——最通俗易懂的原理介绍(图文实例)

写在前面

说到Adaboost,公式与代码网上到处都有,《统计学习方法》里面有详细的公式原理,Github上面有很多实例,那么为什么还要写这篇文章呢?希望从一种更容易理解的角度,来为大家呈现Adaboost算法的很多关键的细节。

本文中暂时没有讨论其数学公式,一些基本公式可以参考《统计学习方法》。

基本原理

Adaboost算法基本原理就是将多个弱分类器(弱分类器一般选用单层决策树)进行合理的结合,使其成为一个强分类器。

Adaboost采用迭代的思想,每次迭代只训练一个弱分类器,训练好的弱分类器将参与下一次迭代的使用。也就是说,在第N次迭代中,一共就有N个弱分类器,其中N-1个是以前训练好的,其各种参数都不再改变,本次训练第N个分类器。其中弱分类器的关系是第N个弱分类器更可能分对前N-1个弱分类器没分对的数据,最终分类输出要看这N个分类器的综合效果。

这里写图片描述


弱分类器(单层决策树)

Adaboost一般使用单层决策树作为其弱分类器。单层决策树是决策树的最简化版本,只有一个决策点,也就是说,如果训练数据有多维特征,单层决策树也只能选择其中一维特征来做决策,并且还有一个关键点,决策的阈值也需要考虑。

这里写图片描述

关于单层决策树的决策点,来看几个例子。比如特征只有一个维度时,可以以小于7的分为一类,标记为+1,大于(等于)7的分为另一类,标记为-1。当然也可以以13作为决策点,决策方向是大于13的分为+1类,小于(等于)13的分为-1类。在单层决策树中,一共只有一个决策点,所以下图的两个决策点不能同时选取。

这里写图片描述

同样的

评论 103
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值