HJ17.坐标移动

描述

       开发一个坐标计算工具, A表示向左移动,D表示向右移动,W表示向上移动,S表示向下移动。从(0,0)点开始移动,从输入字符串里面读取一些坐标,并将最终输入结果输出到输出文件里面。例如:

A10;S20;W10;D30;X;A1A;B10A11;;A10;
处理过程: 起点(0,0)

  • A10 = (-10,0)

  • S20 = (-10,-20)

  • W10 = (-10,-10)

  • D30 = (20,-10)

  • x = 无效

  • A1A = 无效

  • B10A11 = 无效

  • 一个空 不影响

  • A10 = (10,-10)

结果 (10, -10)

#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>
using namespace std;

int main()
{
    int x = 0, y = 0;
    string in_str;
    getline(cin, in_str);

    vector<string> vec;
    stringstream ss(in_str);
    string s;

    cout << "in_str\t" << in_str << endl;
    while (getline(ss, s, ';')) {
        vec.emplace_back(s);
        cout << "s\t" << s << endl;
    }
    for (int i = 0; i < vec.size(); i++) {
        if (vec[i][0] == 'A') {
            x -= atoi(s.c_str() + 1);
        }
        if (vec[i][0] == 'S') {
            y -= atoi(s.c_str() + 1);
        }
        if (vec[i][0] == 'W') {
            y += atoi(s.c_str() + 1);
        }
        if (vec[i][0] == 'D') {
            x += atoi(s.c_str() + 1);
        }
    }
    cout << x << ',' << y << endl;

    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据分类处理是指根据一定的规则或特征将数据进行划分和归类的过程。在python中,可以利用各种数据分类处理的方法和库来完成这一任务。 首先,我们可以使用pandas库来加载和处理数据。通过pandas中的DataFrame数据结构,我们可以将数据加载到内存中,并进行各种操作和转换。 其次,根据数据的特征和目标,可以选择不同的分类处理方法。例如,如果需要对数据进行离散化处理,可以使用pandas的cut()函数或numpy库中的digitize()函数;如果需要对数据进行分组,可以使用pandas的groupby()函数;如果需要对数据进行筛选和过滤,可以使用pandas的Boolean indexing方法等等。这些方法都可以根据特定的条件或规则对数据进行分类处理。 此外,如果需要对数据进行机器学习或深度学习的分类处理,可以使用scikit-learn或tensorflow等机器学习库。这些库提供了丰富的分类算法和模型,可以根据数据的特征和目标进行训练和预测。 最后,在进行数据分类处理时,需要注意数据的质量和准确性。可以使用pandas进行数据清洗和预处理,例如处理缺失值、异常值、重复值等。同时,也要考虑到不同数据类型的处理方法和技巧,如文本数据、时间序列数据、图像数据等。 总之,数据分类处理是数据分析和机器学习领域中重要的一环。在python中,通过使用相应的库和方法,我们可以方便地对数据进行分类和处理,从而提取出有价值的信息和模式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值