Android OpenGL ES 开发教程(8):基本几何图形定义

在前面Android OpenGL ES 开发教程(7):创建实例应用OpenGLDemos程序框架 我们创建了示例程序的基本框架,并提供了一个“Hello World”示例,将屏幕显示为红色。

本例介绍OpenGL ES 3D图形库支持的几种基本几何图形,本篇部分内容与Android OpenGL ES 简明开发教程三:3D绘图基本概念 类似。

通常二维图形库可以绘制点,线,多边形,圆弧,路径等等。OpenGL ES 支持绘制的基本几何图形分为三类:点,线段,三角形。也就是说OpenGL ES 只能绘制这三种基本几何图形。任何复杂的2D或是3D图形都是通过这三种几何图形构造而成的。

比如下图复杂的3D图形,都有将其分割成细小的三角形面而构成的。然后通过上色(Color),添加材质(Texture),再添加光照(lighting),构造3D效果的图形:

点,线段,三角形都是通过顶点来定义的,也就是顶点数组来定义。对应平面上的一系列顶点,可以看出一个个孤立的点(Point),也可以两个两个连接成线段(Line Segment) ,也可以三个三个连成三角形(Triangle)。这些对一组顶点的不同解释就定义了Android OpenGL ES可以绘制的基本几何图形,下面定义了OpenGL ES定义的几种模式:

GL_POINTS

绘制独立的点。

GL_LINE_STRIP

绘制一系列线段。

GL_LINE_LOOP

类同上,但是首尾相连,构成一个封闭曲线。

GL_LINES

顶点两两连接,为多条线段构成。

GL_TRIANGLES

每隔三个顶点构成一个三角形,为多个三角形组成。

GL_TRIANGLE_STRIP

每相邻三个顶点组成一个三角形,为一系列相接三角形构成。

GL_TRIANGLE_FAN

以一个点为三角形公共顶点,组成一系列相邻的三角形。

以上模式对应到Android渲染方法:

OpenGL ES提供了两类方法来绘制一个空间几何图形:

  • public abstract void glDrawArrays(int mode, int first, int count) 使用VetexBuffer 来绘制,顶点的顺序由vertexBuffer中的顺序指定。
  • public abstract void glDrawElements(int mode, int count, int type, Buffer indices) ,可以重新定义顶点的顺序,顶点的顺序由indices Buffer 指定。

其中mode 为上述解释顶点的模式。

前面说过顶点一般使用数组来定义,并使用Buffer来存储以提高绘图性能,参见Android OpenGL ES 开发中的Buffer使用

如下面定义三个顶点坐标,并把它们存放在FloatBuffer 中:

[java]  view plain copy print ?
  1. float[] vertexArray = new float[]{  
  2.  -0.8f , -0.4f * 1.732f , 0.0f ,  
  3.  0.8f , -0.4f * 1.732f , 0.0f ,  
  4.  0.0f , 0.4f * 1.732f , 0.0f ,  
  5.  };  
  6.    
  7. ByteBuffer vbb  
  8.  = ByteBuffer.allocateDirect(vertexArray.length*4);  
  9. vbb.order(ByteOrder.nativeOrder());  
  10. FloatBuffer vertex = vbb.asFloatBuffer();  
  11. vertex.put(vertexArray);  
  12. vertex.position(0);  

有了顶点的定义,下面就可以通过打开OpenGL ES管道(Pipeline)的相应开关将顶点参数传给OpenGL 库:

打开顶点开关和关闭顶点开关的方法如下:

[java]  view plain copy print ?
  1. gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);  
  2.    
  3. ...  
  4.    
  5. gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);  

在打开顶点开关后,将顶点坐标传给OpenGL 管道的方法为:glVertexPointer:

public void glVertexPointer(int size,int type,int stride,Buffer pointer)

  • size: 每个顶点坐标维数,可以为2,3,4。
  • type: 顶点的数据类型,可以为GL_BYTE, GL_SHORT, GL_FIXED,或 GL_FLOAT,缺省为浮点类型GL_FLOAT。
  • stride: 每个相邻顶点之间在数组中的间隔(字节数),缺省为0,表示顶点存储之间无间隔。
  • pointer: 存储顶点的数组。

应用用上可以般顶点的颜色值存放在对应顶点后面,如下图,RGB 采用4 字节表示,此时相邻顶点就不是连续存放的,stride 值为4

对应顶点除了可以为其定义坐标外,还可以指定颜色,材质,法线(用于光照处理)等。

glEnableClientState 和 glDisableClientState 可以控制的pipeline开关可以有:GL_COLOR_ARRAY (颜色) ,GL_NORMAL_ARRAY (法线), GL_TEXTURE_COORD_ARRAY (材质), GL_VERTEX_ARRAY(顶点), GL_POINT_SIZE_ARRAY_OES等。

对应的传入颜色,顶点,材质,法线的方法如下:

glColorPointer(int size,int type,int stride,Buffer pointer)
glVertexPointer(int size, int type, int stride, Buffer pointer)
glTexCoordPointer(int size, int type, int stride, Buffer pointer)
glNormalPointer(int type, int stride, Buffer pointer)

如果需要使用三角形来构造复杂图形,可以使用GL_TRIANGLE_STRIP或GL_TRIANGLE_FAN模式,另外一种是通过定义顶点序列:

如下图定义了一个正方形:

对应的顶点和buffer 定义代码:


[java]  view plain copy print ?
  1. private short[] indices = { 012023 };  
  2. //To gain some performance we also put this ones in a byte buffer.  
  3. // short is 2 bytes, therefore we multiply the number if vertices with 2.  
  4. ByteBuffer ibb = ByteBuffer.allocateDirect(indices.length * 2);  
  5. ibb.order(ByteOrder.nativeOrder());  
  6. ShortBuffer indexBuffer = ibb.asShortBuffer();  
  7. indexBuffer.put(indices);  
  8. indexBuffer.position(0);  


 

定义三角形的顶点的顺序很重要 在拼接曲面的时候,用来定义面的顶点的顺序非常重要,因为顶点的顺序定义了面的朝向(前向或是后向),为了获取绘制的高性能,一般情况不会绘制面的前面和后面,只绘制面的“前面”。虽然“前面”“后面”的定义可以应人而易,但一般为所有的“前面”定义统一的顶点顺序(顺时针或是逆时针方向)。

下面代码设置逆时针方法为面的“前面”:

[java]  view plain copy print ?
  1. gl.glFrontFace(GL10.GL_CCW);  

打开 忽略“后面”设置:

[java]  view plain copy print ?
  1. gl.glEnable(GL10.GL_CULL_FACE);  

明确指明“忽略“哪个面的代码如下:


[java]  view plain copy print ?
  1. gl.glCullFace(GL10.GL_BACK);  


 原文出处:http://blog.csdn.net/mapdigit/article/details/7574808

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值