文章目录
前言
马云说:“未来最大的资源就是数据,不参与大数据十年后一定会后悔。”
不得不说马云确实很有先见,这几年大数据的火爆程序不言而喻。
我从刚入门到现在对大数据的学习脉络和方法也渐渐清晰。
今天我们就来谈谈学习大数据入门语言的选择。当然并不只是我个人之见,此外我搜集了各路大神的见解综合起来跟大家做个讨论。
一、java和python的区别
官方解释:Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。
Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。
Java具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点 。
Java可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等。
Python是一种面向对象的解释型计算机程序设计语言,Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议。
Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。这几年以来编程语言排行榜:Python高居首位。
Java和python,都可以运行于linux操作系统,但很多linux可以原生支持python,java需要自行安装。java和python强于c#的原因大于支持linux,支持osx,支持unix,支持arm。java和python比c++受欢迎的原因在于不需要指针。
不少想学习大数据的零基础学员都知道,学大数据部分课程之前要先学习一种计算机编程语言。大数据开发需要编程语言的基础,因为大数据的开发基于一些常用的高级语言,比如Java和python。不论是大数据生态架构,还是数据挖掘,都需要有高级编程语言的基础。
因此,如果想学习大数据开发,还是需要着手学习一门高级语言。
二、学习大数据该选择什么
咱们再来说下大数据。目前国内很多人在说大数据的时候,实际上是把大数据技术和数据科学(含数据分析、数据挖掘、机器学习)混在一起的,许多讨论和争辩其实源于大家说的不是一个事情。
目前高等学校已经有了大数据相关的专业,名字起得也很好,叫《数据科学和大数据技术》,就是把大数据分成两个方向来看待的。
数据科学侧重数学抽象和软件工具的使用,对数学和编程要求较高;
而大数据技术侧重软件工程实施,对计算机和编程要求较高。
虽然两个方向都强调编程,但数据科学的编程是泛编程,可以简单理解为以使用脚本语言或需要编程的软件工具(如Matlab、SAS、R)。
而大数据技术的讲的编程是计算机通用编程语言(如Java/C/Python),职位也更接近我们所说的程序员或者说“码农”。
根据我在知乎、简书、CNDS等等论坛上关于两者语言的讨论综合得出以下结论:
java主要用于商业逻辑强的领域,如商城系统,erp,oa,金融,保险等传统数据库事务领域,通过类似ssh框架事务代码,对商业数据库,如oralce,db2,sql server等支持较好,软件工程理念较强,适合软件工程式的多人开发模式。
python主要用于web数据分析,科学计算,金融分析,信号分析,图像算法,数学计算,统计分析,算法建模,服务器运维,自动化操作,快速开发理念强,适合快速开发团队或个人敏捷模式。
Python既是一种面向对象的编程语言又因为其简单、易学、开源、脚本语言范儿的“人设”,是一种既适合数据科学又适合大数技术从业者学习的语言。
如果你想学一门语言,可以从语言的适用性、学习的难易程度、企业的要求几个方面考虑,从这几个角度看,学习Python都没有什么可挑剔的。
从语言的适用性看,Python有个外号叫“胶水语言”,就是说Python可以随意地组合它和其它程序,它可以作为一个中间处理模块的代码把其他代码“粘合”在一个工程里面,从而快速的部署和实施。
除了在大数据和数据科学领域,它在web前端开发等领域也有广泛应用。从学习难易度来看,作为一个为“优雅”而生的语言,Python语法简捷而清晰,对底层做了很好的封装,是一种很容易上手的高级语言。
在一些习惯于底层程序开发的“硬核”程序员眼里,Python简直就是一种“伪代码”。
从企业来看,随便打开一个大数据开发的招聘JD,你就会发现不少企业招聘大数据开发工程师时,对具体编程语言的要求已经不再严苛,一般情况下你只要熟练掌握Java/C/Python中的其中一个即可,毕竟软件工程师的的核心能力不是语言本身而是逻辑思考能力,况且现在中间件这么多,各种语言之间的适配和转换也越来越容易,企业需要的是解决问题,而Python was born for it. 就大数据技术而言,Java在PaaS和SaaS层都有非常多的实践和应用,如果你有Java的基础,可以继续学好Java。
如果你没有Java基础,又想往大数据技术方向发展,那么你或许可以考虑把Python作为你的First language。 在数据科学领域,尤其是在深度学习领域,Python是当仁不二的选择。
当然,任何语言都不是完美的,如果你是一个拥抱变化,未来希望在数据工程和软件工程领域都有发展机遇的话,那么我建议你毫不犹豫的拥抱Python,并不断的尝试新的工具和技术。
在实际使用的python入门简单,但要学会用python干活,需要再学习python各种库,pyhton的强大在于库,为什么python的库强大,原因是python的库可以用python,c语言,c++等设计,再提供给python使用,所以无论gpu运行,神经网络,智能算法,数据分析,图像处理,科学计算,各式各样的库在等着你用。
而java没有python那么多的开源库,很多库是商业公司内部使用,或发布出来只是一个jar包,看不到原始代码。python虚拟机因为编译性没有java的支持的好(或者说故意这么设计的),一般直接使用源码(linux),或源码简单打个包(如pyexe)。
总结
对于初学者,尤其是没有接触过语言的人想入门大数据,个人觉得先学python,后学java。首先python作为一门脚本语言,很容易入门。编程并不是说掌握一门或几门语言就足够了,重在提高思维能力。而python容易入门,工具多,短短数行代码就可以实现一个强大的功能,增强初学者的信心,另一方面让初学者有一个对编程思维的初步理解。
在这之后再学习java,首先语法很容易入门,再者对编程有一定理解后,才更能体会到类,继承,接口,甚至之后接触各种框架,这些内容对于大型项目带来的优势。
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取(安全链接,放心点击)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python基础学习视频
② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
因篇幅有限,仅展示部分资料
三、精品Python学习书籍
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python工具包+项目源码合集
①Python工具包
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
②Python实战案例
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
③Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
六、Python兼职渠道
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】