SpreadJS 已经接入 DeepSeek 啦!
相信这段时间,大家都被【DeepSeek】刷屏了。DeepSeek 以其强大的技术能力和创新的解决方案,迅速成为行业焦点,吸引了众多厂商纷纷接入合作。很多使用葡萄城表格技术的开发者们也在问, SpreadJS 能不能接入 DeepSeek 呢?
当然能!本文将介绍 SpreadJS 接入 DeepSeek 的效果和接入方法。有了之前 SpreadJS 接入 ChatGPT 的经验,接入 DeepSeek 更是轻而易举。
SpreadJS 接入 DeepSeek 之后的效果
1.接入之后,先问问是不是 DeepSeek 吧。
确认了,是DeepSeek,没问题。
2.确认之后,使用 DeepSeek 根据单元格数据做动态提问
3.看不懂公式的意思,也问问 DeepSeek 吧
不好意思,没想到DeepSeek认真负责,还给出了示例。Dialog 要弄大点。
4.再试一试用 DeepSeek 生成公式
这次有点过于认真了,如果直接返回公式就可以直接插入单元格了。
5.再和DeepSeek来一点互动
5.1 数据看不懂,看看 DeepSeek 怎么说的。
5.2 怎么创建数据透视表
5.3 说的没错,让他创建吧
透视表都创建了,各种图表也不在话下。
最后,SpreadJS 怎么接入DeepSeek呢
把之前 Demo 里 OpenAI 的地址换成 DeepSeek 的地址,模型改成 DeepSeek 的模型就好啦。主要代码再放一遍,完整工程可以找技术顾问获取。
-
自定义 DeepSeek 提问函数
// 自定义DeepSeek提问函数 var DeepSeek_Query = function () { }; DeepSeek_Query.prototype = new GC.Spread.CalcEngine.Functions.AsyncFunction('DeepSeek.QUERY', 1, 1, { description: "向GPT提问,直接返回结果", parameters: [ { name: "问题" }] }); DeepSeek_Query.prototype.defaultValue = function () { return 'Loading...'; }; DeepSeek_Query.prototype.evaluateAsync = function (context, arg) { if (!arg) { return GC.Spread.CalcEngine.Errors.NotAvailable; } const response = openai.chat.completions.create({ model: modelInfo.model, messages: [ { role: "system", content: "You are a helpful excel assistant. " }, { role: "user", content: arg + ",?只返回结果。" } ], }); response.then(function (completion) { let desc = completion.choices[0].message.content; context.setAsyncResult(desc); }); }; GC.Spread.CalcEngine.Functions.defineGlobalCustomFunction("DeepSeek.QUERY", new DeepSeek_Query());
-
设计器公式分析命令
let formulaAnalyze = { "title":"智能公式分析", "text":"公式分析", "iconClass":"ribbon-button-formulaAnalyze", "bigButton":"=ribbonHeight>toolbarHeight", "commandName":"formulaAnalyze", execute: function(designer){ let spread = designer.getWorkbook(),sheet = spread.getActiveSheet(); let formula = sheet.getFormula(sheet.getActiveRowIndex(), sheet.getActiveColumnIndex()); if(formula){ let loading = ElLoading.service({ lock: true, text: "Loading", background: "rgba(0, 0, 0, 0.7)"}); const response = openai.chat.completions.create({ model: modelInfo.model, messages: [ { role: "system", content: "You are a helpful assistant. 直接告诉我公式的意义,不用计算结果,答复里不能重复问题。" }, { role: "user", content: formula + ",这个公式有什么意义?" } ], }); response.then(function(completion){ loading.close(); let desc = completion.choices[0].message.content; GC.Spread.Sheets.Designer.showMessageBox(desc, "", GC.Spread.Sheets.Designer.MessageBoxIcon.info) }).catch(function(){loading.close()}); } else{ GC.Spread.Sheets.Designer.showMessageBox("单元格没有公式", "提醒", GC.Spread.Sheets.Designer.MessageBoxIcon.warning) } } }
-
创建透视表Function Calling
let messages = [{"role": "system","content": "你是一个数据透视表分析助手。"},
{
"role": "user",
"content":
`根据表格标题内容和需求描述推荐创建数据透视表需要的行、列和值字段。
表格标题为:
---
${headerList}
---
需求描述:
---
${bindingData.description}
---`
}];
let functions = [{"type": "function",
"function":{
"name": "pivot_talbe_analyze",
"description": "对数据创建数据透视表,返回数据透视表结果",
"parameters": {
"type": "object",
"properties": {
"rowFieldName": {
"type": "string",
"description": "行字段名称"
},
"columnFieldName": {
"type": "string",
"description": "列段名称"
},
"dataFieldName": {
"type": "string",
"description": "值字段名称"
},
},
"required": ["rowFieldName", "dataFieldName"]
},
"strict": true
}}]
try {
var completion = await openai.chat.completions.create({
"model": "qwen-plus",
"messages": messages,
"tools": functions,
"function_call": {"name": "pivot_talbe_analyze"}
});
if(completion.choices[0].message.tool_calls){
let args = JSON.parse(completion.choices[0].message.tool_calls[0].function.arguments);
spread.suspendPaint();
let activeSheetIndex = spread.getActiveSheetIndex();
spread.addSheet(activeSheetIndex);
spread.setActiveSheetIndex(activeSheetIndex);
let newSheet = spread.getSheet(activeSheetIndex);
let pivotTable = newSheet.pivotTables.add(getUniquePivotName(newSheet), pivotRange, 2, 0, GC.Spread.Pivot.PivotTableLayoutType.outline, GC.Spread.Pivot.PivotTableThemes.medium2);
pivotTable.add(args.rowFieldName, args.rowFieldName, GC.Spread.Pivot.PivotTableFieldType.rowField);
if(args.columnFieldName){
pivotTable.add(args.columnFieldName, args.columnFieldName, GC.Spread.Pivot.PivotTableFieldType.columnField);
}
pivotTable.add(args.dataFieldName, "求和项:" + args.dataFieldName, GC.Spread.Pivot.PivotTableFieldType.valueField, GC.Pivot.SubtotalType.sum);
spread.resumePaint();
}
}
catch(err){
console.log(err)
}
finally{
}
DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。
DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。
DeepSeek的优点
掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。
那么应该如何学习大模型
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【
保证100%免费
】
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】