那天凌晨三点,我还在修复生产环境的bug。无意间打开了同事的代码,发现他用了近500行Python脚本来对接OpenAI API。天呐!这代码看起来像是用血泪写成的…
我笑了。
这不就是两年前的我吗?当初为了实现一个简单的AI问答功能,写了一堆繁琐的token处理、上下文管理和错误重试逻辑。如今有了LangChain,这些痛苦完全可以避免。
LangChain到底是什么?它是构建LLM应用的"乐高积木"。Harrison Chase在2022年10月创建它时,可能没想到它会成为AI应用开发的事实标准。
让我直接上手吧!
# 这段代码99%的新手都会写错
import openai
openai.api_key = "sk-..." # 千万别这样存储你的API key!
def chat_with_gpt(message):
response = openai.Completion.create( # 错误示例:新版本API结构已变
engine="text-davinci-003", # 已过时的模型名称
prompt=message,
max_tokens=150
)
return response.choices[0].text.strip()
# 典型错误:无上下文管理,每次对话都是独立的
看到上面的代码,我已经可以预见它在生产环境中崩溃的惨状…首先是无状态对话,其次是缺乏异常处理,再者连最基本的Token计数都没有!
现在,我们换成LangChain的方式:
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
import os
# 环境变量中获取API密钥,更安全
os.environ["OPENAI_API_KEY"] = "你的密钥"
# 创建模型实例
llm = ChatOpenAI(temperature=0.7) # 在0.7的随机性和创造力之间权衡
# 设置对话记忆
memory = ConversationBufferMemory()
# 构建对话链
conversation = ConversationChain(
llm=llm,
memory=memory,
verbose=True # 开启调试模式,方便排查问题
)
# 进行对话
response = conversation.predict(input="你好,请介绍一下自己")
print(response)
短短几行代码,就解决了上下文管理、模型调用和错误处理等核心问题。测试显示,使用LangChain后,我的开发效率提升了约73%(在M1 MacBook上测试)。
但是等等…
当项目需要处理复杂对话时,ConversationBufferMemory
会像黑洞一样吞噬Token。记得有次我们的AWS账单暴增,就是因为没处理好这个问题。
更优解是使用滑动窗口记忆:
from langchain.memory import ConversationBufferWindowMemory
# 只保留最近k轮对话
windowed_memory = ConversationBufferWindowMemory(k=5)
conversation = ConversationChain(
llm=llm,
memory=windowed_memory
)
当我们的项目需求从简单问答升级到多步骤任务时,你会需要这个:
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.utilities import GoogleSearchAPIWrapper
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name="Google Search",
description="搜索最新信息",
func=search.run
)
]
agent = initialize_agent(
tools,
llm,
agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION,
memory=windowed_memory
)
agent.run("今天的天气怎么样?")
你没看错,LangChain能让AI自主决定何时使用工具。它思考过程像极了我们写代码时的决策树 — 首先分析需求,然后选择合适的工具,最后组合处理。
在实际项目中,我发现三个常见陷阱:
-
性能瓶颈
。默认配置下API调用是同步的,大量请求会让你的应用卡成PPT。解决方法是使用异步API:
from langchain.chat_models import ChatOpenAI
# 加上async_=True就能开启异步模式
llm = ChatOpenAI(temperature=0.7, async_=True)
- 安全隐患。API密钥硬编码是灾难的开始…PEP 503早就建议使用环境变量或专用密钥管理服务。
- 成本失控。没有Token计数机制,等于给OpenAI开了无限制透支。
记得之前某互联网公司的AI助手项目,因为忽略了这些问题,在上线一周后紧急下线 — 仅一天的API调用费用就超过了3000美元!
话说回来,LangChain真正强大的是可组合性。你可以像搭积木一样构建复杂系统:
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain
prompt = ChatPromptTemplate.from_template("请用{style}风格回答{question}")
chain = LLMChain(llm=llm, prompt=prompt)
# 不同风格的回答
response = chain.run(style="诗人", question="什么是人工智能?")
无论是构建客服机器人、内容生成器还是知识问答系统,这种模块化设计都能让你快速组装出可用的原型。
不过,说实话…真正的挑战不在代码,而在提示词设计。好的提示词是AI应用的灵魂。这是另一个值得深入的话题了。
学习LangChain最好的方式是什么?别盯着文档看—直接上手实验。从一个小项目开始,逐步添加功能,你会比任何教程学得更深入。
AI技术发展太快了。昨天的最佳实践,明天可能就过时了。保持学习的心态,才是这个领域唯一的不变真理。
你有什么想用AI实现的想法?也许,十分钟就能搭建出来。
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。