本篇介绍多模态大模型中如何基于最终结果分析各模态的影响。
具身智能被众多大佬看好,通往AGI的路最终肯定需要多个模态的大模型互相融合。多个模态配合好也是有可能去构建一个模拟现实的世界模型的。
最近一直在研究和尝试多模态大模型在一些VQA领域的前瞻研究和实际落地部署问题,遇到一个值得思考的问题:如果当预测结果出问题的时候,怎么去溯源是哪个模态的数据出的问题呢?这个方向感觉探索的足够深入是可以发论文的。
由于基于注意力机制去溯源的方法在大模型时代成本极高,因此最后还是需要考虑建模后的可解释性方法,目前主要是找到一些比较经典的可解释性机器学习方法,大家有更好的思路也可以提一提啊~
下面是一个快捷目录。
\1. 可解释性机器学习分类
\2. 推荐方法
一、可解释性机器学习分类
1. 内置 or 建模后
- 内置可解释性:将可解释模块嵌入到模型中,比如说线性模型的权重、决策树的树结构。
- 建模后可解释性:在模型训练结束后使用解释技术去解释模型。
2. 特定于模型 or 模型无关
- 特定于模型的解释:意味着必须将解释方法应用到特定的模型体系结构中
- 模型无关:解释方法与所用模型无关联,应用范围广
3. 全局解释 or 局部解释
- 全局解释:解释模型的全局行为
- 局部解释:在单条数据或者说单个实例上的解释
二、推荐方法
主要推荐两个方法:Permutation Importance 和 SHAP;另外还介绍了一下类似于LIME (Local Interpretable Model-agnostic Explanations) 的思路,大家还可以基于这个思路去延伸~
1. Permutation Importance
前提:在model训练完成后,才可以计算
思想:
基于“置换检验”的思想对特征重要性进行检测。简单来说,就是打乱某种模态的数据,保持其余特征不动,看其对预测精度的影响有多大。
计算步骤:
1)用多模态数据训练一个MLLM。(也可以直接用开源的)
2)验证集预测得到得分。
3)验证集的某个单模态数据进行随机打乱,比如把文本给打乱,预测得到得分。
4)将上述得分做差即可得到该模态对预测的影响。
5)同理可以在3)中把另一个模态的数据随机打乱进行验证,最后比较即可。
2. SHAP (SHapley Additive exPlanation)
前提:在model训练完成后计算
思想:
计算特征对模型输出的边际贡献,再从全局和局部两个层面对“黑盒模型”进行解释。
SHAP构建一个加性的解释模型,所有的特征都视为“贡献者”:
对于每个预测样本,模型都产生一个预测值,SHAP value就是该样本中每个特征所分配到的数值。
具体来说,计算一个特征加入到模型时的边际贡献,然后考虑到该特征在所有的特征序列的情况下不同的边际贡献,取均值,即某该特征的SHAP baseline value,包括Kernel Shap,Deep Shap和Tree Shap。
这也是目前可解释机器学习在风控、金融中最实用的一个方法。
3. 类似于LIME (Local Interpretable Model-agnostic Explanations) 的思路
之所以说“类似于”是因为LIME暂时无法实现对图像的解释,但这个思路本身是值得借鉴的。
前提:在model训练完成后计算
思路:
使用训练的局部代理模型来对单个样本进行解释。
假设对于需要解释的黑盒模型,取关注的实例样本,在其附近进行扰动生成新的样本点,并得到黑盒模型的预测值,使用新的数据集训练可解释的模型(如线性回归、决策树),得到对黑盒模型良好的局部近似。
实现步骤
1)如上图是一个非线性的复杂模型,蓝/粉背景的交界为决策函数;
2)选取关注的样本点,如图粗线的红色十字叉为关注的样本点X;
3)定义一个相似度计算方式,以及要选取的K个特征来解释;
4)在该样本点周围进行扰动采样(细线的红色十字叉),按照它们到X的距离赋予样本权重;
5)用原模型对这些样本进行预测,并训练一个线性模型(虚线)在X的附近对原模型近似。
这样就可以使用可解释性的模型对复杂模型进行局部解释。
上述方向只是一些示例和思路,具体一些实现可以看看参考文献。
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。