“ 怎么选择和测试一款大模型,是一个需要思考的问题”
到今天为止,市面上的大模型没有一万也有三千;如果算上那些学习使用的大模型,可能几十万都不止。
但对企业来说,要想构建一个企业级的AI应用,最好的选择就是使用第三方大模型或者使用开源大模型,那么在如此多的模型中,怎么选择一个适合自己任务的大模型呢?
个人开发的人工智能聊天小程序,感兴趣的可以点击查看:
E个助手
人工智能机器人,你想了解的它都知道
小程序
01
—
为什么要选择模型?
这两年市面上的模型如雨后春笋般不断涌现,而且模型的能力也在不断加强。但不论是对个人还是企业来说,东西多了反而不知道该怎么选了。
有句老话叫:“没有最好的,只有最合适的”;这句话放到大模型上也是一样,不论是对个人还是对企业,怎么选择一个好的模型,是一个值得思考的问题。
对个人来说,如果学的是自然语言处理,那么选择一个图片处理的模型就走偏了。
而对一家企业来说,选择模型需要考虑的问题就更多了,比如模型的功能是否满足需求,模型的响应速度,数据安全问题,更新频率以及是否有完善的文档,更重要的是使用模型的成本问题。
而目前由于大模型的应用还处于初级阶段,虽然搞了一年多的千模大战,但真正能把大模型贴合到具体的应用场景中,还处于探索的阶段。
因此,市面上也很难见到完整的大模型企业级解决方案;而今天就来简单讨论一下怎么选择一个适合的大模型;也可以说是选择模型的一个简单方法论。
02
—
怎么选择模型?
无论做任何事,都会有固定的几个步骤,选择模型也不例外;而怎么选择模型,总结了以下几个步骤:
明确任务需求
选择大模型之前,第一步就是要确定任务需求,也就是说你想用大模型干什么?只有明确了任务需求,才能知道应该选择什么样的大模型。
举例来说,你想利用大模型做一个具有图像处理功能的大模型,那么你选择自然语言处理的模型就肯定不合适。
在明白需求的情况下,你才知道怎么想干嘛,以及能干嘛。
确定模型类型和架构
根据任务需求,筛选符合任务功能的模型;比如说,同样都能进行图片处理的大模型,是选择开源的,还是商业闭源;是选择AGI(通用人工智能)这种能够进行多模态处理的大模型,还是选择垂直领域内的模型。
评估大模型和基础能力
在确定大模型的类型之后,就可以对模型进行简单的评估;不论是使用官方给出的评测结果,还是自身的评测手段,比如自己整理一部分业务数据做成测试集,然后丢到模型中进行交叉测试。
评估大模型不但要评估大模型的基础能力,同时还要看大模型的响应速度,是否支持大数据量处理,大模型是否会经常更新等。
选择模型
在确定了前面几个步骤之后,可能会有几个模型供我们选择;这时我们就需要对它们进行筛选了,如果说前面的步骤是硬性条件,那么现在就需要筛选一些软性条件。
比如说,这款大模型的文档是否完善,文档更新是否及时;以及,如果是第三方大模型,那么使用大模型的成本是否合适。
还有就是,大模型是否能本地部署,本地部署需要的成本有多少,需要多少硬件设备,以及需要多少人力进行维护。还有就是数据安全问题,是否能够得到保障等。
总之,选择大模型是一个复杂的过程,特别是不使用第三方模型的情况,自己部署大模型的情况下。
使用第三方模型,如果觉得效果不好换一家就行了;但如果本地部署大模型,如果表现不好那么前期的人力和硬件资源的投入就无法收回了。
当然,这里只是记录一下自己认为的大模型选择方案,可能还有很多问题有待完善,对企业级大模型有了解或感兴趣的朋友可以来参与讨论。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。