完整攻略:如何用好DeepSeek,一文汇总!

本文从DeepSeek的独特优势出发,全面分享了DeepSeek的使用方法,包括:扔掉提示词模板的正确方式、让其 “说人话” 的方法、深度思考技能、强大文风转换器运用,以及使用禁区。

《DeepSeek使用攻略》如下:

注:本文所有技巧均来自真实案例,所有提示词都经过反复验证。

一、最重要的秘密:扔掉你的提示词模板

如果你还在用各种"专业提示词"和"模板",那就是走错了方向。

DeepSeek根本不吃这一套。

为什么?

因为它的核心是推理型大模型,不是指令型大模型。

这就像两个实习生:

  • 一个小书呆子,需要你事无巨细地安排任务步骤。(指令型)
  • 一个小机灵鬼,只要你说明目的,他就能自己思考怎么做。(推理型)

让我用一个真实案例来说明,

我们社群一位运营同学的实测,进行新能源行业分析,用于准备与比亚迪供应商谈判。

传统方式:

请你扮演一位新能源行业分析师,按照以下步骤分析:
1. 市场规模
2. 竞争格局
3. 技术路线
4. 未来趋势
要求:每部分800字,引用权威数据...

结果:得到一份干巴巴的报告,一眼AI。

图片一眼AI,除了正确毛用没有。

正确方式:

我下周要和比亚迪的供应商谈判,但对动力电池一窍不通。帮我用最通俗的语言说明:
1. 他们的技术优势在哪
2. 可能要价多少
3. 有什么谈判时能用的专业术语
重点是让我听得懂,能装得像内行

结果:DeepSeek直接给出接地气的分析,还附带谈判话术。

图片竟然还带话术的

这就是最大的区别:

DeepSeek不需要你写"专业提示词",

它需要的是真实场景具体需求

送您一个通用公式:

我要xx,要给xx用,希望达到xx效果,但担心xx问题…

就像你跟一个聪明的下属说话:

  • 不要说"请按照STAR法则写周报"
  • 而要说:

我要写周报,老板周一要看,希望重点放在xxx上,重点是让咱们部门在老板面前能达到装逼效果,力压隔壁研发部,但担心研发质疑我们产品文档写得不够详细……"

二、最被低估的功能:让它"说人话"

很多人抱怨DeepSeek的回复太抽象,像是在读天书。

图片比如这个,别信

但你可能不知道,只要一个简单的提示词,就能彻底改变这个问题。

这个神奇的提示词是:

说人话。

没错,就这三个字。

我的学员第一次试时还不信,结果…

原始回答:

图片抽象,真TM抽象

加上"说人话"后的回答:

图片人话后

瞬间就接地气了,对吧?

因为deepseek对“说人话”这个词语很敏感。

图片

当然,有时候这三个字不够用,还可以用这个详尽版提示词,直接复制过去即可:

【请用以下规范输出:1.语言平实直述,避免抽象隐喻;2.使用日常场景化案例辅助说明;3.优先选择具体名词替代抽象概念;4.保持段落简明(不超过5行);5.技术表述需附通俗解释;6.禁用文学化修辞;7.重点信息前置;8.复杂内容分点说明;9.保持口语化但不过度简化专业内容;10.确保信息准确前提下优先选择大众认知词汇】

三、最强大的技能:深度思考

这是我不得不说的事:

一个免费的国产AI,正在让月付200美金的GPT-o1坐不住了。

为什么?

因为DeepSeek的思维方式,比GPT-o1更智慧。

让我用一个真实案例来对比:

GPT-o1的回答:

图片图来自@D&roi老师

DeepSeek的回答:

图片推理,而不是线性罗列

这就是最大的区别:

  • GPT-o1线性罗列,像个高级文档工具
  • DeepSeek深度思考,像个思考伙伴

免费的DeepSeek,直接让整个硅谷AI公司的牛马连夜加班,

幸亏他们不用过春节。

但最近,我发现一个现象:

由于用户暴增,DeepSeek明显调整了响应策略:

  • 思考时间从20秒降到5秒
  • 回答深度明显下降
  • 反思能力受限

图片算力紧张,只给5秒

这是可以理解的临时措施,毕竟算力就是烧钱。

但对于我们用户来说,如何继续激发它的深度思考能力?

我整理了三个核心提示词,为了装逼,称为深度思考三件套

  1. 请在你的思考分析过程中同时进行批判性思考至少10轮,务必详尽
  2. 请在你的思考分析过程中同时从反面考虑你的回答至少10轮,务必详尽
  3. 请在你的思考分析过程中同时对你的回答进行复盘至少10轮,务必详尽

如此一来,深度思考将从5秒恢复为20秒左右。

斜体的部分,可以自由替换成你所擅长的形式,也可以组合叠加,

但核心是反思

图片深度思考变回20秒

四、最强大的文风转换器

昨天,我用DeepSeek,写了一篇汉赋。

赞扬一下王星有情有义、智勇双全的女友。王星就是前阵子被卖到缅北的演员。

图片我自己读得特别爽

这用典,这骈文,真的没谁了。

发在群里后,直接炸出了三个语文老师…

图片炸人神器

还有的朋友,写出的文字连专业编剧都说老到。

图片很有味道

图片专业编剧都说牛

事实上,这正是DeepSeek的第四个秘密武器:文风转换器

提示词很简单,哪怕口述就行:

模仿xxx的文风,撰写关于xxxxx的一篇xx文体。

但要注意两点局限:

一方面,它更适合模仿经典作家,因为训练数据充足,风格特征明显。

另一方面,不要期待100%还原,80%相似度已经很厉害,重点是能抓住神韵。

我觉得deepseek肯定是训练了大量的文学语料,尤其是中国古典文学。

比如鲁迅、莫言,都是惟妙惟肖。

图片仿写鲁迅风格

记住那个万能公式:

我要xx,要给xx用,希望达到xx效果,但担心xx问题…

例如:

我要写一篇关于赞颂王星女友机智勇敢用心的赋,用来小红书上面炫技,希望重点放在模仿王勃的篇文上,重点是让我本人的文采装逼,在小红书获得一个亿的赞,但担心别人看不懂太晦涩了……"

类似的风格迁移,也可以放在当代作家上,比如我们模仿刘润老师的跨年演讲:

图片仿写提示词,可以随意

注意要先提供内容原文(尽量详尽,一般不少于8000字),然后直接要求其模仿即可。

图片仿写刘润老师效果

当然,为了更好的效果,最好用上万能公式

五、使用禁区:什么情况不要用它

说了这么多优点,也必须说说它的局限性。

以下场景不建议使用DeepSeek:

1. *长文本写作*

超过4000字的文章容易出现逻辑断裂,建议用Claude200k。

因为deepseek默认是64k,长文不够用。

图片长文本目前确实不够用

2. *敏感内容*

毕竟是国产AI,内置审核尺度丧心病狂。

图片凡是这样回复的时候,就是触发审核

很多时候你不知道哪句话就触发审核了。

这种情况怎么解决呢?

因为deepseek是后置审核,所以有以下三种方案:

1.在你的提问处点击修改,再提交几次,总有一次是不触发审核的。

图片在提问处点击编辑

2.在生成回答的时候,狂点复制回答按钮。这样确保触发审核的时候,你的剪贴板上面拥有前面回答的内容

图片点回答按钮

3.一劳永逸,换御三家。(GPT,claude,gemini)

*3.个人风格写作*

这个就不赘述了,这是个推理模型,适合解决问题、模仿。

但很难通过精确控制来确保你想要的风格写作效果。

这其实不算deepseek的缺点,只能算特性

具体的,我下一篇再来论述吧。

七、它将如何改变我们的AI时代?

经过几天的密集测试,我越来越确信:

DeepSeek代表了AI的未来方向 —— 更懂人话,更会思考

你不需要学习它的语言,它在学习理解你的语言。

这意味着什么?

AI的使用门槛正在快速降低。

未来,我们不需要背诵提示词模板、学习特定的指令,研究各种参数。

只需要,说清楚你要什么,告诉它具体场景,说人话

因为DeepSeek干掉了23年以来AI最反人类的设定

——让人类学习机器语言(提示词)。

图片其实吴恩达提示词工程课初衷是好的

这就像手机进化史的关键转折点:

  • 诺基亚时代:看说明书,学组合键,刷机
  • iPhone时代:三岁小孩上手都会玩

我的投资圈朋友说得更直接:

2024年还教人写提示词的大V,都是在收智商税。

总之,还学个屁的提示词!

所以,这也是为什么我要坚持在过年前发布这篇文章。

Deepseek就是代表了新一代AI的使用范式,辞旧迎新

声明,deepseek一分钱都没给我,但我就是要吹爆。

第八章:国产AI的歼20时刻

我们等这一天太久了。

当我在2023年3月15日,第一次用上GPT-4时,手在发抖。

一方面因为它的强大。

另一方面,也是因为我知道:

这个级别的AI,我们可能要追十年。

直到deepseek发布了R1,我依旧用怀疑的心态试一试,根本没报任何希望,

但看到它的深度思考,给到我的完全不逊于,甚至部分超越了御三家(GPT、claude、gemini)的回答。

我的手再次发抖了。

我知道,时代变了。

DeepSeek让我看到:

  • 它懂"说人话"背后的人情世故
  • 它理解"装逼效果"里的社交规则
  • 它能用《滕王阁序》写缅北诈骗的荒诞

当硅谷还在教用户如何"驯化AI"时,DeepSeek正在做一件更伟大的事:

教会AI理解人的思维。

关键,DeepSeek还是开源的,这也是开源世界AI第一次光明正大地追上闭源世界。

就像歼20总设计师杨伟说的:

“我们不再追赶,我们在定义新的战场。”

这或许就是最好的新年礼物:

在AI的竞赛中,我们第一次与世界站在同一个黎明。

图片歼二十时刻

后记

写到这里,评论区肯定有人要喷我了,

觉得一个破deepseek,至于上升到什么家国情怀么。

我不管,我任性,我就是要上升。

科技没有国界,但老子有祖国,老子有自己人。

老子就想用自家东西,你管我?

今天,终于可以对着西方AI巨头的技术封锁说一句:

你们有的,我们会有。
你们没有的,我们正在创造。

PS

写完这篇文章时,窗外正好响起一声爆竹。

北京其实六环内禁止烟花爆竹燃放,谁知道哪个不知名勇士干的。

我突然想起OpenAI首席科学家Ilya Sutskever说过的话:

真正的涌现,往往发生在主流视野之外。

此刻,在杭州某个未眠的写字楼里,或许正有工程师在调试下一代模型。

而你我手中的DeepSeek,就是那颗已经点燃的爆竹。

听,AI革命的声音。

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值