知识库领域的 LLM 大模型和 Embedding 大模型有区别么?为什么在 RAG 领域,需要单独设置 embedding 大模型?
在人工智能领域,大型语言模型(LLM)和嵌入模型(Embedding Model)是自然语言处理(NLP)中的两大关键技术,尤其在知识库构建和信息检索中发挥着重要作用。
尽管它们都属于 NLP 范畴,但它们在功能、应用场景和资源需求上存在显著差异。
Embedding 模型的主要任务是将文本转换为数值向量表示。这些向量可以用于计算文本之间的相似度、进行信息检索和聚类分析。
Embedding 模型的输出是数值向量。计算机在理解词句含义的时候,是不具备能力的,计算机只能看到一段 01010111 这样的结果。然而,人类看到的词句,是赋予了内部的含义,还带了大量的普世认知。
参考台大李宏毅老师的一张图,做一下说明。
当我们人类理解 猫 vs 狗 和 狗 vs 花的差异的时候,能自然的理解,觉得猫和狗是更加相近的物种;而狗和花,一个是动物,另一个是植物,偏差会更多。
那么,如何让计算机能理解这些词背后的含义呢。所使用的技术就是 Embedding。一句话简单说,embedding 就是把计算机无法理解的字词,转换成一个向量矩阵。
比较相似,或者含意比较接近的词向量之间的距离,是更加接近的。比如 dog 和 cat,dog 和 rabbit; 然而,flower 和 dog,就会隔得比较远。
Embedding 模型广泛应用于文本相似度计算、信息检索、聚类和推荐系统。
在大模型知识库领域中,单独设置 Embedding 模型可以降低系统资源占用和响应延迟,特别是在大规模知识库构建和信息检索中,可以极大程度提升经济型和效率。一般的应用包含以下几个部分:
典型应用流程
\1. 知识库构建阶段
- 使用Embedding模型将文档转换为向量,存储向量到向量数据库(如FAISS、Milvus)
\2. 检索阶段
- 用相同的Embedding模型将用户问题转换为向量,在向量数据库中快速检索相似文档
\3. 回答生成阶段
- 将检索到的相关文档作为上下文,使用LLM生成最终答案
推荐的Embedding模型
Crew.ai 官方组件支持的 Embedding 模型有:
- openai:OpenAI 的嵌入模型
- google:Google 的文本嵌入模型
- azure:Azure OpenAI 嵌入
- ollama:使用 Ollama 进行局部嵌入
- vertexai:Google Cloud VertexAI 嵌入
- cohere:Cohere 的嵌入模型
- 基岩版:AWS Bedrock 嵌入
- huggingface: Hugging Face 模特
- watson:IBM Watson 嵌入
接下来,我们看一下如何在本地安装 Ollama 提供的 embedding 模型。本案例选用的是 nomic-embed-text。
项目参考链接:https://ollama.com/search?c=embedding
先激活对应的工作环境。
source crewai-env/bin/activate
每次开始新的终端会话时,都需要重新激活虚拟环境。如果您看到命令提示符前面有 (crewai) 这样的标识,说明环境已经正确激活。
安装依赖
pip install crewai ollama
看到这个代表已经激活
启动 ollama
ollama serve
安装 embedding 模型
ollama pull nomic-embed-text
因为要配置给其他的服务用,所以需要解决 Ollama 的 embedding host获取问题。
要获取 Ollama 的 embedding host,有以下几种方法:
默认地址:
Ollama 默认运行在 http://localhost:11434。如果您是在本地机器上安装的 Ollama,通常不需要更改这个地址。
如果不确定是否这个端口,验证 Ollama 服务是否运行及其地址,可以按照这个方法执行。
# 检查 Ollama 服务状态curl http://localhost:11434/api/version
看到 11434 的监听结果,说明这个端口就是 ollama 的embedding 模型开放的端口。
到这一步,就代表着 ollama 的embedding 模型已经安装成功。可以对接给其他的应用和服务了。
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来
,需要的小伙伴可以扫取。
一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍!
四、AI大模型各大场景实战案例
五、AI大模型面试题库
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。