揭秘LLM思考力:如何让语言模型学会像人类一样“深思熟虑“ | LLM也有“直觉“和“深思“?

大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是今天觉得比较有意思的论文:

1、揭秘LLM思考力:如何让语言模型学会像人类一样"深思熟虑"

2、LLM也有"直觉"和"深思"?揭秘仿生双系统思维的人工智能

3、MEGA-Bench:500+真实任务全方位检验LLM"眼力",谁是最强"全能选手"?

1、揭秘LLM思考力:如何让语言模型学会像人类一样"深思熟虑"

图片

你是否曾想象过,人工智能也能像人类一样,在回答问题前先"深思熟虑"?论文展示了一个令人兴奋的突破:让大语言模型(LLMs)学会"思考",而不仅仅是简单地回应指令。

图片

研究团队提出了一种创新的训练方法——思维偏好优化(TPO)。这种方法不需要额外的人类数据,而是通过迭代搜索和优化过程,探索可能的思维生成空间。有趣的是,模型通过评估自己的回应来学习如何思考,而无需直接的监督。这就像是让AI在没有人类指导的情况下,自主培养critical thinking的能力。

令人惊喜的是,这种"会思考"的AI不仅在传统的推理和问题解决任务中表现出色,还在市场营销、健康和常识等非推理类别中展现出优势。这打破了我们对AI思考能力应用范围的固有认知,为AI在更广泛领域的应用开辟了新天地。

图片

实验结果显示,经过多轮TPO训练后,"会思考"的AI模型在AlpacaEval和Arena-Hard这两个衡量通用指令跟随能力的基准测试中,分别取得了52.5%和37.3%的优胜率,大幅超越了传统的直接响应模型。这一突破性进展让我们不禁期待:未来的AI助手是否能在回答我们的问题时,展现出更接近人类专家的思考深度和灵活性?

在这里插入图片描述

论文标题:Thinking LLMs: General Instruction Following with Thought Generation

论文链接:https://arxiv.org/abs/2410.10630

2、LLM也有"直觉"和"深思"?揭秘仿生双系统思维的人工智能

在这里插入图片描述

你是否曾想象过,人工智能也能像人类一样,既有快速的直觉反应,又能进行深度思考?论文揭示了一个令人兴奋的LLM架构:仿生双系统思维模型。

在这里插入图片描述

这项突破性研究借鉴了诺贝尔奖得主丹尼尔·卡尼曼提出的人类思维双系统理论,巧妙地将LLM分为"谈话者"(Talker)和"思考者"(Reasoner)两个角色。"谈话者"就像我们的直觉系统,能快速、自然地与用户交流;而"思考者"则像我们的理性系统,负责深度推理、规划和形成信念。

在这里插入图片描述

这种创新架构不仅提高了LLM的效率,还让其表现更接近人类。想象一下,当你与AI助手聊天时,它能立即做出反应,同时在"背后"进行更复杂的思考。更妙的是,"谈话者"可以在等待"思考者"得出结论时,继续与你互动,就像人类边聊天边思考一样自然。

在这里插入图片描述

研究团队以睡眠教练AI为例,展示了这一架构的实际应用。结果令人振奋:AI不仅能进行流畅的对话,还能制定复杂的睡眠改善计划。这一突破让我们不禁期待:未来的AI助手是否将更像一个真正的人类专家,既能与我们畅聊,又能为我们深思熟虑?

论文标题:Agents Thinking Fast and Slow: A Talker-Reasoner Architecture

论文链接:https://arxiv.org/abs/2410.08328

3、MEGA-Bench:500+真实任务全方位检验LLM"眼力",谁是最强"全能选手"?

图片

LLM的"眼力"到底有多强?最新研究MEGA-Bench给出了一个全面的答案。这项突破性研究不再局限于特定领域,而是构建了一个包含500多个真实场景任务的评估体系,涵盖了从网页导航到体育分析等多样化应用,堪称AI视觉能力的"终极考试"。

图片

与以往的评估方法不同,MEGA-Bench不仅考察AI的选择题能力,还要求AI生成数字、短语、代码、甚至JSON等多种输出格式。这种设计更贴近现实应用,真正检验AI的全方位能力。研究团队还开发了40多种评估指标,确保对AI表现的精准衡量。

图片

评估结果令人惊叹:在旗舰模型中,GPT-4以显著优势领先;开源模型中,Qwen2-VL表现出色,几乎可与顶级闭源模型媲美;在高效模型中,Gemini 1.5 Flash展现出全面的实力。有趣的是,研究发现链式思考(CoT)提示对专有模型效果显著,但对多数开源模型反而适得其反。

图片

MEGA-Bench不仅是一次全面评估,更为AI研究者指明了方向。它揭示了不同模型在各类任务中的优劣,为模型优化和应用开发提供了宝贵参考。随着AI不断进化,谁将成为下一个"全能视觉AI"?让我们拭目以待!

论文标题:MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks

论文链接:https://arxiv.org/abs/2410.10563

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值