一文读懂RAGFlow:从 0 到 1教你搭建RAG知识库

一文读懂RAGFlow:手把手教你搭建RAG知识库

引言

最近随着Deepseek的火爆,如何高效地整合海量数据与生成式模型成为了技术领域内的一大热点。传统的生成模型在回答复杂问题时常常依赖于预训练数据的广度与深度,而检索增强生成(Retrieval-Augmented Generation,简称RAG)则有效结合了检索与生成的优势,为各类应用场景提供了更为灵活、高效的解决方案。


RAGFlow概述

RAGFlow的定义

RAGFlow是一种融合了数据检索与生成式模型的新型系统架构,其核心思想在于将大规模检索系统与先进的生成式模型(如Transformer、GPT系列)相结合,从而在回答查询时既能利用海量数据的知识库,又能生成符合上下文语义的自然语言回复。该系统主要包含两个关键模块:数据检索模块和生成模块。数据检索模块负责在海量数据中快速定位相关信息,而生成模块则基于检索结果生成高质量的回答或文本内容。

在实际应用中,RAGFlow能够在客户服务、问答系统、智能搜索、内容推荐等领域发挥重要作用,通过检索与生成的双重保障,显著提升系统的响应速度和准确性。

特点

  • 高效整合海量数据:借助先进的检索算法,系统能够在大数据中迅速找到相关信息,并将之用于生成回答。
  • 增强生成质量:通过引入外部数据,生成模块能够克服模型记忆限制,提供更为丰富和准确的信息。
  • 应用场景广泛:包括但不限于在线问答系统、智能客服、知识库问答、个性化推荐等。

RAGFlow应用场景

在在线客服系统中,RAGFlow能够利用用户的历史咨询记录、产品文档以及FAQ等数据,实时检索出最相关的信息,并通过生成模块整合成自然、连贯的回复,从而大幅提升客户满意度。

RAGFlow系统架构

317212466-d6ac5664-c237-4200-a7c2-a4a00691b485


环境准备与系统搭建

环境需求

在搭建RAGFlow系统前,需要确保开发与运行环境满足以下要求:

  • 硬件配置:建议采用多核CPU、充足内存(16GB及以上)以及支持高并发访问的存储设备;如需部署大规模检索服务,可考虑使用分布式存储集群。
  • 操作系统:推荐使用Linux发行版(如CentOS、Ubuntu)以便于Shell脚本自动化管理;同时也支持Windows环境,但在部署自动化脚本时可能需要适当调整。
  • 开发语言与工具:主要使用Java进行系统核心模块开发,同时结合Shell脚本实现自动化运维。
  • 依赖环境:需要安装Java 8及以上版本,同时配置Maven或Gradle进行依赖管理;对于数据检索部分,可采用ElasticSearch、Apache Solr等开源检索引擎;生成模块则依赖于预训练模型,可以借助TensorFlow或PyTorch进行实现。

服务器配置

  • • CPU >= 4 核
  • • RAM >= 16 GB
  • • Disk >= 50 GB
  • • Docker >= 24.0.0 & Docker Compose >= v2.26.1

安装

修改 max_map_count

确保 vm.max_map_count 不小于 262144

如需确认 vm.max_map_count 的大小:

$ sysctl vm.max_map_count

如果 vm.max_map_count 的值小于 262144,可以进行重置:

# 这里我们设为 262144:
$ sudo sysctl -w vm.max_map_count=262144

你的改动会在下次系统重启时被重置。如果希望做永久改动,还需要在 /etc/sysctl.conf 文件里把 vm.max_map_count 的值再相应更新一遍:

vm.max_map_count=262144
下载仓库代码
git clone https://github.com/infiniflow/ragflow.git
Docker拉取镜像

修改镜像为国内镜像并且选择embedding版本

修改文件docker/.env/

默认配置为:RAGFLOW_IMAGE=infiniflow/ragflow:v0.16.0-slim

修改为国内镜像:RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.16.0

RAGFlow image tagImage size (GB)Has embedding models?Stable?
v0.16.0≈9✔️Stable release
v0.16.0-slim≈2Stable release
nightly≈9✔️Unstable nightly build
nightly-slim≈2Unstable nightly build

运行命令拉取镜像

docker compose -f docker/docker-compose.yml up -d

image-20250218134526193查看日志

docker logs -f ragflow-server

提示下面提示说明启动成功

     ____   ___    ______ ______ __
    / __ \ /   |  / ____// ____// /____  _      __
   / /_/ // /| | / / __ / /_   / // __ \| | /| / /
  / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ /
 /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:9380
 * Running on http://x.x.x.x:9380
 INFO:werkzeug:Press CTRL+C to quit

访问IP,进入 RAGFlow,注意不是 9380 端口,Web是http://127.0.01默认为 80 端口

image-20250218135456390

应用

注册账号

image-20250218135625403

注册完直接登录

image-20250218135717184

添加模型

本文用到的模型类型:Chat 和 Embedding。 Rerank 模型等后续在详细介绍。

点击右上角->模型提供商->添加模型

image-20250219161523490

填写模型信息,模型类型选 chat

image-20250219161441642

再添加一个 Embedding 模型用于知识库的向量转换(RAGFlow 默认也有 Embedding)

image-20250219161827675

在系统模型设置中配置聊天模型嵌入模型为我们刚刚添加的模型

image-20250219163114721

创建知识库

image-20250219162148401

填写相关配置

  • • 文档语言:中文
  • • 嵌入模型:选择我们自己运行的bge-m3:latest,也可以用默认的。具体效果大家自行评估

image-20250219162457976

上传文件

这里我自己造了一个测试文档来验证知识库,内容是编的,介绍一个 ABCD 工具,文档在文末提供下载。

image-20250219162616449

image-20250219162528361

文件上传后是未解析状态,需要解析才可以使用,点击解析

image-20250219162738069

解析成功后点击文件可以看到解析效果

image-20250219162906257

效果

image-20250219162931748

创建聊天

image-20250219163339314

设置模型。token 调整大一些

image-20250219163408611

验证效果

问题一:直接发送 ABCD

知识库回答

image-20250219163519619

原文档

image-20250219163648682

问题二:ABCD 错误代码有哪些

知识库回答

image-20250219164100751

原文档

image-20250219164043103

问题三:ABCD 支持哪些系统

知识库回答

image-20250219164230807

原文档

image-20250219164256131

问题四:ABCD 官网

知识库回答

image-20250219164944000

你也可以在回答的结果看到他引用的知识库

image-20250219165026381

原文档

image-20250219165057019


总结

本文介绍了 RAGFlow 的基础使用方法,从演示效果来看尚可。然而,在实际应用场景中,各类文件格式与结构各不相同,文件解析成为一大难题。一旦解析不准确,即便使用性能强劲的 Deepseek-R1 大模型(经亲测),也会出现分析错误的情况。因此,在 RAG 过程中,文件解析、Embedding 以及 LLM 是提升准确率的三大关键攻克点。

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### Java 中向 RAGFlow 传递数据 为了实现从 Java 应用程序到 RAGFlow 工作流的数据传输,可以采用 RESTful Web Service 或者 gRPC 这样的远程过程调用协议。这两种方法都允许跨平台通信,并且能够很好地集成现代微服务架构。 #### 使用 RESTful API 方式 RESTful API 是一种广泛使用的网络应用程序编程接口设计风格。对于 Java 来说,可以通过构建一个 HTTP 请求来发送 JSON 数据给 RAGFlow 服务器端点。下面是一个简单的例子: ```java import okhttp3.*; public class RagflowClient { private static final String BASE_URL = "http://localhost:8080/api/v1/ragflow"; public void sendData(String query, List<String> documents) throws IOException { OkHttpClient client = new OkHttpClient(); JSONObject jsonBody = new JSONObject(); jsonBody.put("query", query); JSONArray docsArray = new JSONArray(documents); jsonBody.put("documents", docsArray); RequestBody body = RequestBody.create( MediaType.parse("application/json; charset=utf-8"), jsonBody.toString() ); Request request = new Request.Builder() .url(BASE_URL) .post(body) .build(); try (Response response = client.newCall(request).execute()) { if (!response.isSuccessful()) throw new RuntimeException("Unexpected code " + response); System.out.println(response.body().string()); } } } ``` 这段代码展示了如何创建一个 `OkHttp` 客户端实例并向指定 URL 发送 POST 请求,其中包含了查询字符串和文档列表作为请求体的一部分[^1]。 #### 使用 gRPC 协议方式 gRPC 提供了一个更高效的二进制序列化方案和服务发现机制。如果性能至关重要,则推荐使用这种方式来进行客户端与 RAGFlow 之间的交互。首先需要定义 `.proto` 文件描述消息结构和服务契约;接着利用 Protocol Buffers 编译器生成相应的存根类用于编码解码操作。 ```protobuf syntax = "proto3"; package ragflow; service RagflowService { rpc ProcessQuery(QueryRequest) returns (QueryResponse) {} } message QueryRequest { string query = 1; repeated string documents = 2; } message QueryResponse { string result = 1; } ``` 之后,在 Java 端就可以像这样发起 RPC 调用了: ```java ManagedChannel channel = ManagedChannelBuilder.forAddress("localhost", 50051) .usePlaintext() // For testing purposes only. .build(); try { RagflowGrpc.RagflowBlockingStub stub = RagflowGrpc.newBlockingStub(channel); QueryRequest request = QueryRequest.newBuilder() .setQuery(queryText) .addAllDocuments(documentList) .build(); QueryResponse response = stub.processQuery(request); System.out.println("Received from server: " + response.getResult()); } finally { channel.shutdownNow(); } ``` 此段代码说明了怎样建立连接、准备请求对象并通过阻塞模式同步等待响应结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值