最进在学神经网络,所以就得先从基础得做起,手写神经网络(斜眼笑),那就~开始吧!!
import numpy as np
#sigmoid激活函数
def sigmoid(x,deriv=False):
if deriv == True:
return x*(1-x)
else:
return 1/(1+np.exp(-x))
在这里先写一个sigmoid激活函数,else后面就是sigmoid得表达式,其数学公式也很简单
它的图像是这样的
至于if后面的x*(1-x)是sigmoid函数的求导之后的表达式,其化简过程是这样的
其中
至于为什么是x*(1-x),下面在作解释,现在我们得定义输入了,再次就随意定义了,只为说明神经网络原理,
#输入x
x =