【Python数据分析-8】:Numpy常用操作-arange函数、linspace函数与运算

本文介绍了Numpy在Python数据分析中的两个重要函数:arange和linspace,分别用于创建整数和等间距小数数组。还讨论了Numpy的元素级别运算,包括矩阵运算和一元运算,以及如何根据axis进行多维数组计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 arange函数

创建类似Python 的range函数功能的Numpy数组的方法:
下面的例子创建一个从1开始到10,步长为2的一维Numpy数组

In [21]: np.arange(1, 10, 2)
Out[21]: array([1, 3, 5, 7, 9])

2 linspace函数

但是当需要创建小数构成的数组时,由于一个整数到另一个整数之间存在无数个小数,使用arange就不能实现了。所以Numpy提供了linspace函数:
下面的例子生成0到10之前等距的10个数:

# np.linspace(起点,终点,需要生成的数字个数)
In [25]: np.linspace(0, 10, 10)
Out[25]:
array([ 0.        ,  1.11111111,  2.22222222,  3.33333333,  4.44444444,
        5.55555556,  6.66666667,  7.77777778,  8.88888889, 10.        ])

3 运算

Numpy运算
Numpy的运算是基于元素级别的,具体可以看以下例子理解:

In [27]: data1 = np.arange(1, 5, 1)

In [28]: data2 = np.arange(2, 6, 1)

In [29]: data1
Out[29]: array([1, 2, 3, 4])

In [30]: data2
Out[30]: array([2, 3, 4, 5])

In [31]: data2 - data1
Out[31]: array([1, 1, 1, 1])

In [32]: data1 * 3
Out[32]: array([ 3, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值