43、云与分布式编程技术解析

云与分布式编程技术解析

在当今的计算领域,云平台和分布式编程技术正发挥着越来越重要的作用。下面将详细介绍云平台的一些关键特性以及并行和分布式编程的相关范式。

云平台特性
部署优势

部署能够显著简化系统。对于 N 个平台特性,仅需 N 个服务,而其他方法可能产生多达 2N 个可能的镜像,这显示了部署在简化系统方面的巨大优势。

表格和 NOSQL 非关系型数据库

简化的数据库结构(即“NOSQL”)有了大量重要的发展,这类数据库通常强调分布式和可扩展性。在三大主要云平台中都有体现:Google 的 BigTable、Amazon 的 SimpleDB 和 Azure 的 Azure Table。表格在科学领域很重要,天文学中的 VOTable 标准以及 Excel 的广泛使用就是例证。不过,在云之外使用表格的经验似乎并不多。

非关系型数据库有许多重要用途,特别是在元数据存储和访问的三元组存储方面。最近,人们对基于 MapReduce、表格或 Hadoop 文件系统构建可扩展的 RDF 三元组存储产生了兴趣,并且在大型存储方面已有早期成功案例。当前的云表格可分为两类:Azure Table 和 Amazon SimpleDB 非常相似,支持“文档存储”的轻量级存储;而 BigTable 旨在管理无大小限制的大型分布式数据集。所有这些表格都是无模式的(每个记录可以有不同的属性),不过 BigTable 有列(属性)族模式。对于科学计算而言,表格的重要性可能会增加,学术系统可以借助两个 Apache 项目来支持:用于 BigTable 的 Hbase 和用于文档存储的 CouchDB。另一个选择是开源的 SimpleDB

考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建求解过程,重点关注不确定性处理方法需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习交叉验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值