44、并行与分布式编程范式:MapReduce及其相关技术解析

并行与分布式编程范式:MapReduce及其相关技术解析

1. MapReduce流程详解

MapReduce是一种用于大规模数据处理的编程模型,其流程包含多个关键步骤。
- 通信阶段 :Reduce工作节点在得知所有Map工作节点的区域位置后,会使用远程过程调用从各个Map工作节点的相应区域读取数据。由于所有Reduce工作节点都会从所有Map工作节点读取数据,这就导致了全对全的通信,进而引发网络拥塞,这也是限制此类系统性能提升的主要瓶颈之一。为解决此问题,有人提出了独立调度数据传输的数据传输模块。
- 排序和分组阶段 :当Reduce工作节点完成输入数据的读取后,数据会先被缓存在本地磁盘。接着,Reduce工作节点会根据键对中间的(键,值)对进行排序,然后将相同键的所有出现情况分组。之所以要对缓存数据进行排序和分组,是因为Map工作节点产生的唯一键数量可能超过R个区域,且每个区域可能存在多个键。
- Reduce函数阶段 :Reduce工作节点会遍历分组后的(键,值)对,对于每个唯一键,将其和对应的值发送给Reduce函数。该函数处理输入数据,并将输出结果存储在用户程序预先指定的文件中。

为了更清晰地说明MapReduce框架中相互关联的数据控制和控制流,以下是其控制流的mermaid流程图:

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(输入文件):::
考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建求解过程,重点关注不确定性处理方法需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习交叉验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值