Paddle 0-d Tensor 使用指南

Paddle 0-d Tensor 使用指南

1. 0-d Tensor 的定义

在深度学习框架中,Tensor 是存储和操作数据的基本数据结构。一个 Tensor 可以有 0 到任意多的维度,每个维度对应一个 shape 值。而 0-d Tensor,顾名思义,就是一个无任何维度的 Tensor,也被称为标量(scalar) Tensor。

从数学的角度来看,0维 Tensor 可以看作是一个单个的数值,没有向量或矩阵等更高维度的结构。例如:

import paddle

# 创建0维Tensor
scalar = paddle.to_tensor(3.14)
print(scalar, scalar.shape)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
#        3.14000010) []

可以看到,这个 scalar 是一个单个的浮点数 3.14,它的 shape 是一个空列表 [],表示没有任何维度。0-d Tensor 其对应的是Numpy的 0-D array,可以表示为 np.array(10.),其shape为 [],维度为 0,size为 1。

对比之下,一维的 Tensor 则表示一个向量,其对应的是 Numpy的 1-D array,如果只有 1 个元素,可以表示为 np.array([10.]),其 shape 为 [1],维度为 1,size为 1。下面我们来看一个一维 Tensor 的例子:

vector = paddle.to_tensor([1, 2, 3])
print(vector, vector.shape)
# Tensor(shape=[3], dtype=int64, place=Place(cpu), stop_gradient=True,
#        [1, 2, 3]) [3]

这里vector是一个一维张量,有3个元素,对应shape为[3]。

以上从数学角度上区分了 0-d Tensor 和 1-d Tensor,在物理学中,标量和矢量是两个基本的物理量概念。标量只有一个数值,没有方向; 而矢量除了数值外,还附带一个确定的方向。

0-d Tensor对应着物理学中的标量概念。一个 0-d Tensor,如 3.14、2.78 等,仅仅表示一个单一的数值,没有任何其他维度的信息。它可以表示一些简单的物理量,如温度、质量、电荷等。

而 1-d Tensor 则对应着矢量的概念。即使只有1个元素,如 [5.0],它也不是一个纯标量,而是一个有确定方向的向量。这个方向在物理意义上可能表示力、速度、电场强度等有方向性的物理量。

尽管在代码实现上,0-d 和 1-d Tensor 可能没有太大的区别,但它们对应的数学和物理概念是不同的。作为开发者,明确这种区别将有助于写出更加符合数学规范、更加符合物理意义的代码,从而减少逻辑错误和调试成本。

2. 0-d Tensor 滥用为 1-d Tensor 的危害

滥用 0d Tensor 来代替1维单元素Tensor(shape为[1]) 给使用体验带来一些负面影响,主要体现在以下几个方面:

2.1 潜在的纬度错误

标量张量与仅含有一个元素的向量张量容易造成混淆,它们的元素个数相同,但在数学定义上完全不同。若将其形状表示为 shape=[1],则无法区分标量和向量,这与数学语义和行业通用的计算规则相悖,可能导致模型出现意料之外的错误,并增加开发调试成本。

由于 0-d 和 1-d Tensor 在数学上有着本质区别,很多 API 在处理这两种情况时的行为也不尽相同。如果不加区分地混用,就可能导致 API 的行为出现异常。

import torch

x = torch.tensor(3.14) 
out = torch.stack([x, x])
print(out.shape)  # 输出 torch.Size([2])  0D升为1D,符合预期

如果 Paddle 不支持 0-d Tensor,就需要额外判断 x 是否为 1D,然后补squeeze来矫正结果,这造成了代码的冗余与可读性降低。写法如下:

import paddle

x = paddle.to_tensor(3.14)

# Paddle 写法需4行:需要额外判断x是否为1D,是就需要补squeeze来矫正结果以对齐 pytorch
if len(x.shape) == 1:
    # 因为用shape=[1]的1维替代0维,导致x[0]还是1维,stack结果为2维,出现异常升维,需要补squeeze来校正维度
    out = paddle.stack([x[0], x[0]]).squeeze()
else:
    out = paddle.stack([x[0], x[0]])

如果 Paddle 支持 0-d Tensor,就无需增加这些额外判断的代码,代码可与其他深度学习框架(例如Pytorch)完全一致。写法如下:

import paddle

x = paddle.to_tensor(3.14)

out = paddle.stack([x, x])
print(out.shape)

由上可看出,支持0-d Tensor后的Paddle代码,在写法上简洁清晰很多,提升了用户体验与API易用性。

2.2 代码可读性降低

正如上面的例子,为了区分0维和1维的情况,需要增加很多额外的判断和操作代码,使得代码的可读性和可维护性大幅降低。而遵循标准的数学语义,区分对待0维和1维,则可以写出更加简洁优雅的代码。

2.3 与第三方库集成困难

很多第三方库在实现时,都会遵循标准的数学规范,区分对待0维和1维Tensor。如果我们的代码中滥用0维作1维,就可能导致无法与这些库正常交互、集成它们的算子和模型。

比如在 Paddle 2.5 支持 0-d Tensor 之前,EinOps(一个用户量较大的爱因斯坦求和库)计划支持 Paddle 后端,为与其他框架(MxNet、TF、Pytorch等)保持统一结构,需要使用 0-d Tensor,然而发现 Paddle 有些 API 不支持 0维Tensor,当前就只能暂停对 Paddle 的适配。

3. 应支持 0-d Tensor 的情况

3.1 逐元素计算类

对于所有的 elementwise 一元运算(如 tanh、relu 等)和二元运算 (如 add、sub、multiply 等),理应支持 0-d Tensor 作为输入或通过广播机制与高维Tensor进行计算。同时,复合运算如 Linear(相当于matmul+add)也应支持 0维输入。

Paddle 已经支持了全部逐元素计算类的运算:

import paddle

# 一元运算
x = paddle.to_tensor(3.14)
y = paddle.tanh(x)
print(y) # 0.9953155994415283

# 二元运算
x = paddle.to_tensor(2.0)
y = paddle.to_tensor([1.0, 2.0, 3.0])
z = x + y  # 0维可广播
print(z) # [3. 4. 5.]

在这个例子中,y 是 x 的 tanh 运算,是一个标量,因此适合用 0-d Tensor 来表示。z 是 x 和 y 的加法,x 是一个标量,y 是一个向量,通过广播机制,可以得到一个向量,因此适合用 0-d Tensor 来表示。

3.2 升维和降维操作

诸如 unsqueeze、squeeze、reshape 等显式改变 Tensor 形状的 API,都应当支持0维输入或输出。

Paddle 在这一块做得较好,下面是一些例子:

# 升维
x = paddle.to_tensor(3.14) 
y = paddle.unsqueeze(x, 0) 
print(y.shape) # [1]

# 降维
z = paddle.squeeze(y)
print(z.shape) # []  

# 0维输出
w = paddle.reshape(x, [])
print(w.shape) # []

当 x 是一个 0-d Tensor 时,unsqueeze 可以将其升维为 1-d Tensor,squeeze 可以将其降维为 0-d Tensor,reshape 可以将其形状改变为 []。

3.3 Tensor 创建相关

能够直接创建 0维Tensor 的 API 是很有必要的,它们包括:

  • 不指定 shape 时,如 to_tensor 将标量转为 0维
  • 显式指定 shape=[]
  • 拷贝已有 Tensor 时,维度信息应保持不变

Paddle 在这一部分的支持也是比较全面的:

# Python标量 -> 0维Tensor
scalar = paddle.to_tensor(3.14)
print(scalar)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
#        3.14000010)

# 指定shape = []
zeros = paddle.zeros([])
ones = paddle.ones([], dtype="int32") 
print(zeros)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.)
print(ones)
# Tensor(shape=[], dtype=int32, place=Place(cpu), stop_gradient=True, 1)

# 保持原shape
t = paddle.to_tensor([1.0, 2.0])
scalar = t[0] # 0维输出
copy = paddle.assign(scalar) # 0维拷贝
print(scalar)
# Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.)

3.4 轴向归约运算

当对 Tensor 进行诸如 sum、mean、max 等的归约操作时,如果指定了 axis=None,就应当有0维输出的可能。Paddle 已经支持了这种情况:

# axis=None归约所有维度可0维输出  
x = paddle.rand([2, 3])
y = paddle.sum(x, axis=None) # 0维输出
print(y.shape) # []

对 x 进行 sum 操作,axis=None 表示对所有维度进行归约,输出是一个标量,因此适合用 0-d Tensor 来表示。

3.5 索引切片操作

在使用索引切片的时候,应当支持输入和输出是 0-d Tensor 的情况。

  • 索引输入0D时:使用标量作为索引的时候,输入0-D时,应该与int标量索引的效果一致,具有降维效果,以下是一个例子:
import paddle

x = paddle.rand([2, 2, 2])
y = x[paddle.to_tensor(0)] 
print(y)
# Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
#        [[0.97571695, 0.84757918],
#         [0.35047710, 0.37460467]])
  • 索引输出0D时:当索引的输出应当支持 0-d Tensor 时,例如3-D Tensor取 [0,0,0],降3维应输出 0D,以下是一个例子:
x = paddle.rand([2, 2, 2])
y = x[0, 0, 0]

print(y)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
       0.07096851)

同理,gather、scatter等类似功能API应具有相同效果,下面的例子展示了gather的 0维 输入和输出:

x = paddle.to_tensor([0, 1, 2, 3])
index = paddle.to_tensor(0)
# index 是 0-d Tensor
y = paddle.gather(x, index)
# 输出是 0-d Tensor
print(y)
# Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
#        0)

3.6 标量属性输入

有些Op的属性语义上应该是标量值,如 shape、start/end、step 等,这种情况下应当支持 0-d Tensor 作为输入。

# paddle.linspace的start/end/step都支持0维输入
start = paddle.to_tensor(1.0)
end = paddle.to_tensor(5.0) 
values = paddle.linspace(start, end, 5)
print(values) # [1. 2. 3. 4. 5.]

在这个例子中,start 和 end 都是标量,适合用 0-d Tensor 来表示。linspace 的输出是一个向量,但是 start 和 end 是标量,因此适合用 0-d Tensor 来表示。

3.7 标量输出语义

有些计算的输出在语义上应该是个标量值,如向量点积、秩、范数、元素个数等,这种情况下应返回 0维Tensor。下面是一些例子:

# 点积输出0维Tensor  
x = paddle.rand([5])
y = paddle.rand([5])
z = paddle.dot(x, y)
print(z.shape) # []

# 范数输出0维
norm = paddle.norm(x, p=2) 
print(norm.shape) # []

上面的例子中,z 是 x 和 y 的点积,是一个标量,因此适合用 0-d Tensor 来表示。同理,norm 是 x 的二范数,也是一个标量,适合用 0-d Tensor 来表示。

3.8 自动求导

在深度学习中,自动微分是一个非常核心的特性,支持标量对标量(0维对0维)的求导是很有必要的。

import paddle

# 标量对标量导数
x = paddle.to_tensor(3.0, stop_gradient=False)
y = x**2 
y.backward()
print(x.grad)  # 6.0

上面的例子中,x 是一个 0-d Tensor,y 是 x 的平方,y.backward() 可以计算出 y 对 x 的导数,结果是 6.0。这种标量对标量的求导是深度学习中很常见的操作,因此支持 0-d Tensor 的自动求导是很有必要的。

3.9 损失函数输出

深度学习模型的损失函数输出通常是一个标量值,用以指示整个小批次的损失大小,这适合用 0维Tensor 来表示。

import paddle.nn.functional as F

logits = paddle.rand([4, 10])  # 假设是分类模型的输出логит
labels = paddle.randint(0, 10, [4])  # 对应的类别标签

loss = F.cross_entropy(logits, labels)
print(loss.shape)  # []

在这个例子中,loss 是一个标量,用以表示整个小批次的交叉熵损失,因此适合用 0-d Tensor 来表示。

4. 总结

在深度学习框架中,0维Tensor虽然形式简单,但具有重要的概念意义和实际应用价值。它不仅对应数学和物理上的标量概念,也是各种标量计算和控制流程的基础表示形式。

支持 0-d Tensor的使用,可以让框架更加贴合数学规范,让代码更加简洁优雅。同时,它也是实现很多实用功能的基石。框架要避免在处理0维和1维Tensor时产生行为分歧,尽量与其他主流框架保持一致,方便模型和算子在不同框架间的移植。当下 Paddle 框架中已经全面支持 0-D Tensor,并实际上已成为后续新增算子的开发规范,让用户能够方便地使用 0-d Tensor。

参考文献

  1. https://github.com/PaddlePaddle/community/blob/master/pfcc/paddle-code-reading/ZeroDim/judge_zero_dim.md
  2. https://github.com/PaddlePaddle/community/blob/master/pfcc/paddle-code-reading/ZeroDim/zero_dim_concept.md
  3. https://github.com/PaddlePaddle/community/blob/master/pfcc/paddle-code-reading/ZeroDim/all_zero_dim_api.md
  • 23
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值