寻找两个有序数组的中位数
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
题解
首先将两组数据有序地放入一个数组中,然后按中位数方法计算就行。
嗯,本题重点就是将两组有序数据放入合并成一个有序数据。这并不是难的。或许空间优化上可以做些东西。
我想,可以实现算出那个数的位置,然后合并取数的同时就能快速算出中位数了。用python写出,发现还更烂了,是我的方法错了。。。就不那份贴代码了。
Python代码如下64 ms/13.6MB
:
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
len1, len2 = len(nums1), len(nums2)
string = []
while nums1 and nums2:
if nums1[0] < nums2[0]:
string.append(nums1.pop(0))
else:
string.append(nums2.pop(0))
string.extend(nums1)
string.extend(nums2)
leng = len1 + len2
if leng%2==0:
a = leng//2
return (string[a]+string[a-1])/2
else:
return string[leng//2]
C++代码。。。写得都比Python还差多了。。。待以后优化吧:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
vector<int> v;
int len1 = nums1.size(), len2 = nums2.size();
int cur1 = 0, cur2 = 0;
while(cur1<len1 && cur2<len2){
if(nums1[cur1] <= nums2[cur2]){
v.push_back(nums1[cur1++]);
}else{
v.push_back(nums2[cur2++]);
}
}
while(cur1<len1){v.push_back(nums1[cur1++]);}
while(cur2<len2){v.push_back(nums2[cur2++]);}
int sum = len1+len2;
if(sum%2==0){
int id = sum/2;
return (v[id]+v[id-1])/2.0;
}else{
int id = sum/2;
return v[id];
}
}
};