NLP项目windows环境搭建

本文详细介绍了如何安装Anaconda,配置PyCharm,创建Python虚拟环境,配置JupyterNotebook,安装CUDA和cudnn,以及安装适合CUDA版本的PyTorch,确保GPU支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、安装Anaconda

二、安装PyCharm

三、创建Python虚拟环境

1. 打开命令窗口

2. python虚拟环境

查看当前有哪些Python虚拟环境

创建Python虚拟环境

四、配置Jupyter环境

1. 创建桌面快捷方式

2. 为jupyter配置对应的虚拟环境

3. 切换jupyter的内核

五、安装cuda

1. 查看CUDA版本

2. 安装CUDA

下载CUDA

安装CUDA

查看CUDA环境变量

3. 检验程序

六、安装cudnn

1. 下载cudnn

​编辑

2. 解压cudnn

3. 添加环境变量

4. 检验安装

​编辑

七、安装GUA版本的pytorch

1. 查看python版本

2. 下载torch库

3. 下载torchvision库

4. 下载torchaudio库

5. 安装pytorch

6. 检验安装


一、安装Anaconda

Free Download | Anaconda

二、安装PyCharm

PyCharm:JetBrains为专业开发者提供的Python IDE

三、创建Python虚拟环境

1. 打开命令窗口

"开始"菜单中找到Anaconda3 - Anaconda Powershell Prompt

说明:

Anaconda Powershell Prompt: 模拟Linux命令进行操作

Anaconda Prompt: 使用windows系统的Dos命令操作文件系统

2. python虚拟环境

查看当前有哪些Python虚拟环境

(base) PS E:\安装包\python环境> conda env list
# conda environments:
#
base                  *  F:\program\anaconda3

创建Python虚拟环境

注意!创建虚拟环境时,最好指定python版本,否则只在后面加入python,就会创建最新的python版本,但是最新版本python很多库无法安装。

(base) PS E:\安装包\python环境> conda env list
# conda environments:
#
base                  *  F:\program\anaconda3
mytest                   F:\program\anaconda3\envs\mytest

(base) PS E:\安装包\python环境> conda create -n nlp python=3.9
Collecting package metadata (current_repodata.json): done
Solving environment: done


==> WARNING: A newer version of conda exists. <==
  current version: 22.9.0
  latest version: 23.9.0

Please update conda by running

... 省略

Retrieving notices: ...working... done

查看是否创建成功

(base) PS E:\安装包\python环境> conda env list
# conda environments:
#
base                  *  F:\program\anaconda3
nlp                      F:\program\anaconda3\envs\nlp

使用创建的虚拟环境

(base) PS E:\安装包\python环境> conda activate nlp
(nlp) PS E:\安装包\python环境>

退出创建的虚拟环境

(nlp) PS E:\安装包\python环境> conda deactivate nlp
(base) PS E:\安装包\python环境>

四、配置Jupyter环境

1. 创建桌面快捷方式

将快捷图标复制到桌面,同时右击图标—属性,修改目标(T)中的内容,.py路径不删除,最后的改成自己的目标路径

:\program\anaconda3\python.exe F:\program\anaconda3\cwp.py F:\program\anaconda3 F:\program\anaconda3\python.exe F:\program\anaconda3\Scripts\jupyter-notebook-script.py 你的目标路径

2. 为jupyter配置对应的虚拟环境

进入对应的虚拟环境,安装ipykernel。

pip命令后面接了一个-i https:...命令,这表示通过指定的网站下载ipykernel。pip默认是国外的网址,下载可能比较慢。

(base) PS C:\Windows\system32> conda activate nlp
(nlp) PS C:\Windows\system32> pip install ipykernel -i https://pypi.tuna.tsinghua.edu.cn/simple

将当前的虚拟环境映射成jupyter的内核。

--name=nlp表示将当前虚拟环境映射成jupyter的内核时,内核名为nlp

(nlp) PS C:\Windows\system32> python -m ipykernel install --user --name=nlp
Installed kernelspec nlp in C:\Users\95786\AppData\Roaming\jupyter\kernels\nlp

3. 切换jupyter的内核

重启jupyter,进入代码文件中:Kernel - Change kernel - 你的内核名

五、安装cuda

安装pytorch时,需要实现安装好cuda环境。

只需要知道CUDA版本,就能知道pytorch能安装什么版本了。

1. 查看CUDA版本

2. 安装CUDA

下载CUDA

当前版本是11.4,去官网获取CUDA Toolkit 官网

选一个最新的11.4.4版本的CUDA Toolkit工具包

安装CUDA

选择自定义

可以去掉一些用不到的组件,这里默认全选

记住下面地址,后续需要添加环境变量的话,将以下三个地址加入到PATH环境变量里。

查看CUDA环境变量

安装完毕后,可以看到,已经自动添加环境变量了。

3. 检验程序

C:\Users\LMeng>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Mon_Oct_11_22:11:21_Pacific_Daylight_Time_2021
Cuda compilation tools, release 11.4, V11.4.152
Build cuda_11.4.r11.4/compiler.30521435_0

六、安装cudnn

1. 下载cudnn

需要注册NVIDIA账户:cuDNN Archive | NVIDIA Developericon-default.png?t=N7T8https://developer.nvidia.com/rdp/cudnn-archive

无需注册:cuDNN Archive | NVIDIA Developericon-default.png?t=N7T8https://developer.nvidia.com/rdp/cudnn-archive#a-collapse51b

因为是CUDA 11.4版本,所以这里选择了cuDNN v8.2.4

2. 解压cudnn

下载完毕后,是zip压缩包

解压后,进入压缩包,将下面所有文件复制到,刚才安装的CUDA路径下,默认cuda路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4

3. 添加环境变量

4. 检验安装

进入到目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\extras\demo_suite

打开命令窗口,运行下面两个exe程序:banwidthTest.exe, deviceQuery.exe

结果Result = PASS即安装成功

七、安装GUA版本的pytorch

1. 查看python版本

首先激活虚拟环境,查看python版本:

当前的python版本是3.9

接下来下载本地whl文件,方便创建其他虚拟机时候快速安装pytorch环境。

2. 下载torch库

在网址中,进入torch目录,或者进入:download.pytorch.org/whl/torch/

因为安装的CUDA是11.4版本,所以在列表中搜素cu114,但是搜不到对应版本,接着搜cu113,可以看到有很多对应的torch。

我的Python是3.9版本的,对应的是cp39,故而要下torch-xxx+cu113-cp39-cp39-win_amd64.whl的文件。

这里选择最新的1.12.1版本的torch下载。

3. 下载torchvision库

进入网址:download.pytorch.org/whl/torchvision

根据上述找版本的规则,直接搜cu113-cp39,下载最新的0.13.1版本的torchvision。

4. 下载torchaudio库

进入网址:download.pytorch.org/whl/torchaudio

下载torchaudio-0.12.1版本

5. 安装pytorch

激活虚拟环境,然后进入到下载的目录中

6. 检验安装

import torch
import torchvision
# 确认PyTorch版本号
print("PyTorch Version: ", torch.__version__)
print("Torchvision Version: ", torchvision.__version__)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值