文章目录
- 摘要
- numpy的ndarray数据结构的索引与赋值
- 创建空白画布
- 初始化白色的画布
- 初始化彩色的画布
- 利用cv2的内置方法merge与split 利用numpy内置的索引
- 综合实验-初始化背景
- 「❤️ 感谢大家」
摘要
在这篇文章中将给大家讲解如何分别用numpy的方法,与numpy与cv2结合的方法创建空白画布,创建白色画布,与创建彩色画布。在讲解过程中还会介绍cv2进行通道分割cv2.split与通道合并cv2.merge的两个函数的具体使用以及深究numpy的ndarray数据结构的索引与赋值。
这里多说一句,小编是一名python开发工程师,这里有我自己整理了一套最新的python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。想要这些资料的可以进裙930900780领取。
numpy的ndarray数据结构的索引与赋值
在使用画图工具的时候, 第一件事情就是创建一个新的空白画布,我们可以指定画布的大小和颜色。
那我们如何使用opencv来创建一个空白的画布(值相同的图片) ?
其实image的数据结构上的图片,本质上就是numpy里面的ndarray的对象,创建一个画布本质上就是创建一个同等规格的ndarray。
创建一个新的特定尺寸的ndarray我们可以使用np.zeors 函数,我们将图像的高度(height),图像的宽度(width),以及图像的通道数channel 以tuple 类型传入np.zeros。再次声明是tuple类型。
另外由于不是所有的numpy类型的数值,都可以放到opencv中进行图像处理.
数值取值范围在0-255, 我们需要指定数据类型为uint8 unsigned integer 8-bit
np.zeros((height, width, channels), dtype="uint8")
1
复制代码
举个例子:想创建一个800 x 600 x 3 的图片,一个BGR格式的图像,我们就得这么写:
# 初始化一个空画布 300×300 三通道 背景色为黑色
canvas_black = np.zeros((600, 800, 3), dtype="uint8")
12
复制代码
得到的效果如下:
注意: height写在前面
为什么Height写在前面?
就得知道opencv图像的数据结构是numpy,Image的属性,其实就是numpy的ndarray数据格式的属性。
我们可以直接获取img对象的诸多属性,例如我们打印lena图的属性,具体如下:
# -*- coding: utf-8 -*-
import numpy as np
import cv2
# 导入一张图像 模式为彩色图片
img = cv2.imread('lena.jpg', cv2.IMREAD_COLOR)
print("================打印图像的属性================")
print("图像对象的类型 {}".format(type(img)))
print(img.shape)
print("图像宽度: {} pixels".format(img.s