LLM对齐经验之如何降低通用能力损失

这一章我们重点讨论下如何注入某一类任务或能力的同时,尽可能不损失模型原有的通用指令理解能力。因为在下游或垂直领域应用中,我们设计的推理任务风格或形式,往往很难通过prompt来稳定实现。这种情况下就会依赖微调来注入稳定的推理风格,但同时在部分场景下我们又需要模型微调前的通用指令理解能力。虽然理论上说有得必有失,但成年人真的不想做选择!这里我们讨论两种方案,来尽可能降低通用能力的损失,一种数据方案,一种训练方案。

Two Stage Finetune - ProMoT

  • Preserving In-Context Learning ability in Large Language Model Fine-tuning
  • TWO-STAGE LLM FINE-TUNING WITH LESS SPECIALIZATION AND MORE GENERALIZATION

先说训练方案,论文先是分析了模型在微调过程中能力损失的一个主要原因是Format Specialization,也就是模型过拟合了微调任务的输出格式。举几个例子

  • 下游是二分类任务的,微调之后即便丢掉分类任务的指令,模型的输出还是True/False,损失了对话和其他指令理解能力
  • 下游是摘要任务的,微调之后即便丢掉TL;DL的总结指令,你让模型翻译模型还是给你总结。这个在当前推出的一些长文本无敌的基座模型上可能会看到,他们后期的指令微调中指令分布都比较偏向于长文本的QA和总结,其他能力会略弱
  • 通过微调让模型学习拒绝回答的,你会发现你的模型可能在很多不该拒绝的场景也拒绝你

其实核心就是我们本想让模型学习条件生成能力,也就是在分类指令时分类,摘要指令下摘要,该拒绝的场景下再拒绝。但论文通过分析发现在传统微调任务中,模型是先无脑拟合输出格式,例如二分类的True/False,拒绝里的对不起,在微调后期才开始学习input和ouput之间的关系(Semantic Relation),例如何时该分类,何时该拒绝。

那能否把下游任务的Task Format先行注入到额外的参数中,之后把这部分信息喂给模型,让大模型微调直接学习Semantic Relation,这样在稳定注入新的Format的前提下,尽可能不影响其他input的推理格式。

论文提出了两阶段微调,第一阶段也使用了谷歌提出的Prompt Tuning用来学习Format,第二阶段再进行全量微调。如下 image

第一阶段Prompt Tuning,简单说就是冻结大模型,只微调Embedding层的一组虚拟Token,这一组虚拟Token学习的就是下游推理任务Format的任务表征。

这里可以反过来思考,之前有论文提出任务指令(prompt)其实可以压缩成一个Task Vector的任务表征用来引导模型给出不同的推理输出;那反过来我们想让模型学习一种推理风格/任务,其实就是构建该Format对应的Task Vector,以及Task Vector对应的任务指令的过程。只不过prompt tunning的prompt使用的是虚拟Token。想更多了解Prompt Tuning的童鞋看这里解密Prompt系列3. 冻结LM微调Prompt: Prefix-tuning & Prompt-tuning & P-tuning

image

第二阶段Fine-tuning默认在输入层Embedding前拼接Prompt Embedding,b并冻结这部分Embedding,然后全量微调大模型, 让模型在已知输出格式的前提下,学习Input和Output格式之间的Semantic联系。之前有些疑惑这里为何要冻结prompt,后来又想了想应该是为了避免模型再把Task Format相关信息更新到模型内部参数中,但感觉不冻结的方式也值得测试下。

几个值得聊聊的细节

  1. 第一阶段微调能否用Lora,从Prompt实际学习的是推理格式的任务表征这个逻辑原理来说其实Adapter类的微调方案,似乎并不合理。论文测试后也发现Lora的效果并不好
  2. 能否把两个阶段合二为一,既加上一个虚拟Prompt,同时微调模型和prompt,论文测试后发现效果和SFT相差不多,都会有过拟合。毕竟这种微调方式无法引导模型把格式学到Prompt Embedding上。

效果上,论文在mT5模型上对比了SFT,Prompt-Tuning,和ProMoT在下游微调任务,和微调任务之外其他通用任务的能力对比。发现ProMoTe可以在分类,翻译,NLI,QA等任务微调上对比全量微调都有更好的效果。同时以分类任务为例,在分类任务上进行微调后,在QA等其他任务上相比基座模型能力也没有显著下降,作为对照组的SFT会有显著的通用能力的下降。

image

image

Dual-Stage Mixed Finetuning - DMT

  • How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
  • Scaling Relationship on Learning Mathematical Reasoning with Large Language Models

DMT的论文主要探究了不同领域数据混合,以及混合训练策略对模型在多领域能力的影响。

1. 单领域Scaling curve

要想设计更合理的多领域混合训练策略,首先要确认不同领域样本模型学习的scaling curve。这个问题之前已经有很多论文讨论过,这里简单回顾下,如下图所示

image

  • 数学和代码等领域能力,会随样本量上升而持续提升,并且模型规模越大scaling curve越单调且陡峭。 这一点和我们的测试效果相似,数学和代码样本你就可劲加,加一点模型好一点,更多细节看上面Scaling的论文。
  • 通用指令能力,基本在1K(1/256的样本)的样本上效果就很好了,后续能力提升会比较慢,并且在不同规模的模型上差异相对有限。 这一点我们在前文讨论过详见LLM对齐经验之数据越少越好?

2. 多领域混合Scaling curve

明确单一领域的scling curve之后,我们来看多领域的数据混合,这里会分别讨论数据混合中的两个要点:整体量级和混合比例

  1. 整体量级:和以上单领域实验相同的5种不同采样比例,直接对三个领域的数据进行混合,和上面的单领域实验结果进行对比。观察下图会发现在低资源上领域混合会有提升,但在更大的样本量级上单领域微调效果会略好 一个可能的解释是在小量级样本上会有彼此的能力迁移,而当单领域信息逐步提升后信息冲突会逐渐显现

image

  1. 混合比例:为了进一步探究以上全样本混合训练中出现的信息冲突的来源,作者进一步做了控制变量的实验。固定一个领域(math和code合成一个领域)的样本量改变另一个领域的样本量,看不同比例数据混合的影响。主要结论有
  • 主领域样本还是越多越好
  • 当领域样本差异(输出格式/输入分布)较大时,通用领域数据对特殊领域影响有限
  • 当样本存在相似性时混合会带来冲突,但冲突和数据比例没有显著单调性

image

3. 训练策略影响

论文实验了不同训练策略的影响,包括多领域联合训练,有序训练(Code->Math->General),以及先训练Math+Code再训练general的有序混合训练,。这几种策略之前也有很多论文做过测试,这里简单说下结论

  • 多领域联合训练:会更多学到特殊领域(Math+code),更多损伤通用能力。这块可以更多借用ProMoT的逻辑,因为特殊领域输出风格一致模型更容易学到,而通用领域输出风格更多样些
  • 有序训练和有序混合训练:只要是先训练领域能力再训练通用能力,因为灾难遗忘的原因,最终模型会把先学到的领域能力遗忘

image

在以上三种训练方案的基础上,论文提出了两阶段混合训练(DMT)如下

第一阶段是领域数据的训练,按照单领域scaling curve,这一部分的数据量越大效果越好,所以使用全量级的数学和代码进行训练。

第二阶段用于恢复通用能力,同时尽量避免有序训练带来的灾难遗忘。 这里使用了上面多领域混合的insight,领域数据的混合比例对通用能力影响较小;同时低资源混合带来的冲突较小。因为论文使用了1/256的领域数据和通用数据进行混合进行第二阶段的训练。在尽量避免第一阶段模型学到的能力丢失的基础上,帮助模型恢复通用能力。

效果上在LLaMA7B,13B,和33B的模型上,DMT的训练方案能在保留单领域训练绝大多数领域能力的基础上,保证模型通用能力不受损失,甚至略微有所提升。如果想要保留更多的领域能力,允许更多的通用能力损失,则可以适当提高第二阶段的领域数据占比,具体要数据集上case by case的测试。 image

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值