树的深度优先搜索

first, it, is a tree;

so,let’s see what can you do to dfs it;

firstly, we see the root like one;

在这里插入图片描述

than, we diffusion the root to other node which is linked with it at first;

在这里插入图片描述

do the samething again untill you can not;

在这里插入图片描述

then, you comeback and do the thing again and again;

在这里插入图片描述

So our traversat is going to be;

it sounds not easy but not very hard;

the code is

#include<bits/stdc++.h>

using namespace std;

const int N = 100010, M = N * 2;

int n;
int h[n], e[M], ne[M], idx;
bool st[N]//使用bool表示这个节点是否被使用过,每个节点都只被使用一次 

void add(int a, int b);
{
	e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

void dfs(int u)
{
	st[u] = true;
	for(int i = h[u]; i != -1; i = ne[i])//遍历到没有剩下的点为止 
	{
		int j = e[i]
		if(!st[j])	dfs(j);//如果这个点没有被收缩,那么这个点也会被加入; 
	}
}

int main()
{
	memset(h, -1, sizeof h);
}

so, let’s look at problem and use it to solve;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
code

#include<bits/stdc++.h>

using namespace std;
const int N = 1e5 + 10;
int e[N << 1], ne[N << 1];
int h[N], idx, n;
int ans = N;
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

int dfs(int u)
{
    st[u] = true;
    int sum = 0, size = 0;
    
    for(int i = h[u]; i != -1; i= ne[i])
    {
        int j = e[i];
        if(st[j]) continue;
        int s = dfs(j);
        sum += s;
        size = max(size, s);
    }
    size = max(size, n - sum - 1);
    
    ans = min(size, ans);
    
    return sum + 1;
}

int main()
{
    cin >> n;
    memset(h, -1, sizeof h);
    for(int i = 1; i < n; i ++)
    {
        int a, b;
        cin >> a >> b;
        add(a, b);//同时联通两边,转化为无向; 
        add(b, a);
    }
    dfs(1);
    cout << ans << endl;
    return 0;
}

𝓽𝓱𝓪𝓷𝓴𝓼

@threeWeatherMan
@是丝豆呀

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜狗原来是我自己

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值